Geometric-phase backaction in a mesoscopic qubit-oscillator system

被引:22
|
作者
Vacanti, G. [1 ]
Fazio, R. [1 ,2 ,3 ]
Kim, M. S. [4 ]
Palma, G. M. [5 ,6 ]
Paternostro, M. [7 ]
Vedral, V. [1 ,8 ,9 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117548, Singapore
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] CNR, Ist Nanosci, I-56126 Pisa, Italy
[4] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
[5] Univ Palermo, Dipartimento Fis, I-90123 Palermo, Italy
[6] CNR, NEST Ist Nanosci, I-90123 Palermo, Italy
[7] Queens Univ Belfast, Sch Math & Phys, Ctr Theoret Atom Mol & Opt Phys, Belfast BT7 1NN, Antrim, North Ireland
[8] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[9] Natl Univ Singapore, Dept Phys, Singapore 117548, Singapore
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 02期
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
NANOMECHANICAL RESONATOR; QUANTUM; OPTOMECHANICS; MECHANICS;
D O I
10.1103/PhysRevA.85.022129
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro-and nanomechanical devices coupled to an effective two-level system.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Wigner function description of a qubit-oscillator system
    Allen, James
    Zagoskin, A. M.
    LOW TEMPERATURE PHYSICS, 2013, 39 (03) : 289 - 293
  • [2] Wigner function description of a qubit-oscillator system
    Allen, J., 1600, Institute for Low Temperature Physics and Engineering (39):
  • [3] Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation
    Wang Yue-Ming
    Du Guan
    Liang Jiu-Qing
    CHINESE PHYSICS B, 2012, 21 (04)
  • [4] Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation
    王月明
    杜冠
    梁九卿
    Chinese Physics B, 2012, (04) : 323 - 327
  • [5] Entanglement dynamics in a dispersively coupled qubit-oscillator system
    Wahyu Utami, D.
    Clerk, A. A.
    PHYSICAL REVIEW A, 2008, 78 (04):
  • [6] Coherent dynamics of a qubit-oscillator system in a noisy environment
    Wu, Wei
    Cheng, Jun-Qing
    QUANTUM INFORMATION PROCESSING, 2018, 17 (11)
  • [7] Dynamics of a qubit-oscillator system with periodically varying coupling
    Amico, Mirko
    Kezerashvili, Roman Ya
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 54 (01)
  • [8] Spectrum of the Dicke model in a superconducting qubit-oscillator system
    Ashhab, S.
    Matsuzaki, Y.
    Kakuyanagi, K.
    Saito, S.
    Yoshihara, F.
    Fuse, T.
    Semba, K.
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [9] Non-Markovian effects on the nonlocality of a qubit-oscillator system
    Li, Jie
    McKeown, Gerard
    Semiao, Fernando L.
    Paternostro, Mauro
    PHYSICAL REVIEW A, 2012, 85 (02)
  • [10] Passive error correction with a qubit-oscillator system in noisy environment
    Zhu, Yanzhang
    Hwang, Myung-Joong
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 85 (11) : 890 - 897