Trial wave functions for high-pressure metallic hydrogen

被引:24
|
作者
Pierleoni, Carlo [1 ]
Delaney, Kris T. [2 ]
Morales, Miguel A. [3 ]
Ceperley, David M. [3 ]
Holzmann, Markus [4 ,5 ]
机构
[1] Univ Aquila, INFM CNR SOFT, I-67010 Laquila, Italy
[2] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Paris 06, LPTMC, F-75005 Paris, France
[5] LPTMC, CNRS UJF, F-38042 Grenoble, France
关键词
Quantum Monte Carlo; many-body wave functions; ab initio methods; high pressure hydrogen;
D O I
10.1016/j.cpc.2008.01.041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many body trial wave functions are the key ingredient for accurate Quantum Monte Carlo estimates of total electronic energies in many electron systems. In the Coupled Electron-Ion Monte Carlo method, the accuracy of the trial function must be conjugated with the efficiency of its evaluation. We report recent progress in trial wave functions for metallic hydrogen implemented in the Coupled Electron-Ion Monte Carlo method.,v, I We We describe and characterize several types of trial functions of increasing complexity in the range of the coupling parameter 1.0 <= r(s) <= 1.55. report wave function comparisons for disordered protonic configurations and preliminary results for thermal averages. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 50 条
  • [31] Known unknowns in high-pressure hydrogen
    不详
    NATURE PHYSICS, 2005, 1 (01) : 8 - 8
  • [32] High-pressure melting curve of hydrogen
    Davis, Sergio M.
    Belonoshko, Anatoly B.
    Johansson, Borje
    Skorodumova, Natalia V.
    van Duin, Adri C. T.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (19):
  • [33] CHARACTERIZATION OF HIGH-PRESSURE HYDROGEN LEAKAGES
    Cerbarano, Davide
    Lo Schiavo, Ermanno
    Tieghi, Lorenzo
    Delibra, Giovanni
    Minotti, Stefano
    Corsini, Alessandro
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 2, 2023,
  • [34] High-Pressure Sorption of Hydrogen in Urea
    Safari, F.
    Tkacz, M.
    Katrusiak, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (14): : 7756 - 7762
  • [35] A pressure-induced high-pressure metallic GeTe phase
    Zhao, Lamei
    Zhang, Xinran
    Wan, Biao
    Zhang, Zhuangfei
    Shen, Weixia
    Zhang, Yuewen
    Fang, Chao
    Chen, Liangchao
    Wang, Qianqian
    He, Julong
    Jia, Xiaopeng
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (13):
  • [36] Enhancement of adhesion between the polymeric liner and the metallic connector of high-pressure hydrogen storage tank
    V. Motaharinejad
    L. Delnaud
    M. Fouque
    A. Lucas
    M. Shirinbayan
    J. Fitoussi
    A. Tcharkhtchi
    International Journal of Material Forming, 2021, 14 : 249 - 260
  • [37] Enhancement of adhesion between the polymeric liner and the metallic connector of high-pressure hydrogen storage tank
    Motaharinejad, V
    Delnaud, L.
    Fouque, M.
    Lucas, A.
    Shirinbayan, M.
    Fitoussi, J.
    Tcharkhtchi, A.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2021, 14 (02) : 249 - 260
  • [38] TRANSITION OF XENON INTO THE METALLIC STATE AT A HIGH-PRESSURE - SUPERCONDUCTIVITY OF METALLIC XENON
    YAKOVLEV, EN
    TIMOFEEV, YA
    VINOGRADOV, BV
    JETP LETTERS, 1979, 29 (07) : 362 - 364
  • [39] METHODS OF MATERIAL TESTING IN HIGH-PRESSURE HYDROGEN ENVIRONMENT AND EVALUATION OF HYDROGEN COMPATIBILITY OF METALLIC MATERIALS - CURRENT STATUS IN JAPAN
    Kobayashi, Hideo
    Kobayashi, Hiroshi
    Sano, Takeru
    Maeda, Takashi
    Tamura, Hiroaki
    Ishizuka, Ayumu
    Kimura, Mitsuo
    Yoshikawa, Nobuhiro
    Iijima, Takashi
    Yamabe, Junichiro
    Matsuoka, Saburo
    Matsunaga, Hisao
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2018, VOL 6B, 2019,
  • [40] High-pressure gaseous hydrogen permeation test method -property of polymeric materials for high-pressure hydrogen devices (1)-
    Fujiwara, Hirotada
    Ono, Hiroaki
    Onoue, Kiyoaki
    Nishimura, Shin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (53) : 29082 - 29094