Covariance Analysis of LAV Robust Dynamic State Estimation in Power Systems

被引:4
|
作者
Sun, Lu [1 ,2 ]
Chen, Tengpeng [3 ]
Ho, Weng Khuen [1 ]
Ling, Keck Voon [4 ]
Maciejowski, Jan M. [5 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] Nanyang Technol Univ, Expt Power Grid Ctr, Singapore 627590, Singapore
[3] Xiamen Univ, Dept Instrumental & Elect Engn, Xiamen 361102, Peoples R China
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[5] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
IEEE SYSTEMS JOURNAL | 2020年 / 14卷 / 02期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
State estimation; Mathematical model; Power system dynamics; Technological innovation; Covariance matrices; Phasor measurement units; Noise measurement; Dynamic state estimation; influence function (IF); innovation model; least absolute value (LAV); phasor measurement unit (PMU); RBF NEURAL-NETWORKS; KALMAN FILTER; FLOW; UNCERTAINTY;
D O I
10.1109/JSYST.2019.2936595
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In power system state estimation, the robust least absolute value robust dynamic estimator is well known. However, the covariance of the state estimation error cannot be obtained easily. In this article, an analytical equation is derived using influence function approximation to analyze the covariance of the robust least absolute value dynamic state estimator. The equation gives insights into the precision of the estimation and can be used to express the variances of the state estimates as functions of measurement noise variances, enabling the selection of sensors for specified estimator precision. Simulations on the IEEE 14-bus, 30-bus, and 118-bus systems are given to illustrate the usefulness of the equation. Monte Carlo experiments can also be used to determine the covariance, but many data points are needed and hence many runs are required to achieve convergence. Our result shows that to obtain the covariance of the state estimation error, the analytical equation proposed in this article is four orders of magnitude faster than a 10 000-run Monte Carlo experiment on both the IEEE 14-bus and 30-bus systems.
引用
收藏
页码:2801 / 2812
页数:12
相关论文
共 50 条
  • [41] A survey on recent advances on dynamic state estimation for power systems
    Qu, Bogang
    Peng, Daogang
    Shen, Yuxuan
    Zou, Lei
    Shen, Bo
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (16) : 3305 - 3321
  • [42] Distributed Robust Bilinear State Estimation for Power Systems with Nonlinear Measurements
    Zheng, Weiye
    Wu, Wenchuan
    Gomez-Exposito, Antonio
    Zhang, Boming
    Guo, Ye
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (01) : 499 - 509
  • [43] Robust state estimation for power systems via moving horizon strategy
    Chen, Tengpeng
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2017, 10 : 46 - 54
  • [44] Robust State Estimation of Power Systems Based on Equivalent Measurement Technique
    Uatrongjit, Sermsak
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2018, 13 (02) : 212 - 217
  • [45] Network topology error identification in robust state estimation for power systems
    Romero, DR
    Garcia, JR
    CONTROL OF POWER PLANTS AND POWER SYSTEMS (SIPOWER'95), 1996, : 207 - 212
  • [46] Multistage PMU Placement Scheduling for Robust State Estimation in Power Systems
    Hao, Jinping
    Piechocki, Robert J.
    Kaleshi, Dritan
    Chin, Woon Hau
    Fan, Zhong
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION WORKSHOP (ICCW), 2015, : 1952 - 1957
  • [47] A Robust Dynamic State Estimation Method for Power Systems Using Exponential Absolute Value-Based Estimator
    Chen, Tengpeng
    Ren, He
    Li, Po
    Amaratunga, Gehan A. J.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [48] Adaptive Robust State Estimation for Power System Based on Dynamic Partitioning and Multiple Estimation Criteria
    Yu W.
    Huang M.
    Wei Z.
    Sun G.
    Duan F.
    Liu R.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45 (19): : 173 - 180
  • [49] Dose response analysis using robust covariance estimation
    Sidik, K
    BIOMETRICAL JOURNAL, 2001, 43 (01) : 63 - 74
  • [50] Robust covariance estimation for distributed principal component analysis
    Li, Kangqiang
    Bao, Han
    Zhang, Lixin
    METRIKA, 2022, 85 (06) : 707 - 732