A note on the unirationality of a moduli space of double covers

被引:0
|
作者
Iyer, Jaya N. N. [2 ,3 ]
Mueller-Stach, Stefan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
[2] Univ Hyderabad, Dept Math & Stat, Hyderabad 500046, Andhra Pradesh, India
[3] Inst Math Sci, Chennai 600113, Tamil Nadu, India
基金
英国工程与自然科学研究理事会;
关键词
Moduli spaces; curves; algebraic groups; Chow groups; SYMMETRICAL SPACES; ABELIAN VARIETY; CURVES; GENUS; RATIONALITY;
D O I
10.1002/mana.201010060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we look at the moduli space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal R}_{3,2}$\end{document} of double covers of genus three curves, branched along 4 distinct points. This space was studied by Bardelli, Ciliberto and Verra in 1. It admits a dominating morphism \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal R}_{3,2} \rightarrow {\mathcal A}_4$\end{document} to Siegel space. We show that there is a birational model of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal R}_{3,2}$\end{document} as a group quotient of a product of two Grassmannian varieties. This gives a proof of the unirationality of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal R}_{3,2}$\end{document} and hence a new proof for the unirationality of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal A}_4$\end{document}.
引用
收藏
页码:2206 / 2211
页数:6
相关论文
共 50 条