A note on the unirationality of a moduli space of double covers

被引:0
|
作者
Iyer, Jaya N. N. [2 ,3 ]
Mueller-Stach, Stefan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
[2] Univ Hyderabad, Dept Math & Stat, Hyderabad 500046, Andhra Pradesh, India
[3] Inst Math Sci, Chennai 600113, Tamil Nadu, India
基金
英国工程与自然科学研究理事会;
关键词
Moduli spaces; curves; algebraic groups; Chow groups; SYMMETRICAL SPACES; ABELIAN VARIETY; CURVES; GENUS; RATIONALITY;
D O I
10.1002/mana.201010060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we look at the moduli space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal R}_{3,2}$\end{document} of double covers of genus three curves, branched along 4 distinct points. This space was studied by Bardelli, Ciliberto and Verra in 1. It admits a dominating morphism \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal R}_{3,2} \rightarrow {\mathcal A}_4$\end{document} to Siegel space. We show that there is a birational model of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal R}_{3,2}$\end{document} as a group quotient of a product of two Grassmannian varieties. This gives a proof of the unirationality of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal R}_{3,2}$\end{document} and hence a new proof for the unirationality of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal A}_4$\end{document}.
引用
收藏
页码:2206 / 2211
页数:6
相关论文
共 50 条
  • [1] THE MODULI SPACE OF ETALE DOUBLE COVERS OF GENUS 5 CURVES IS UNIRATIONAL
    Izadi, Elham
    Lo Giudice, Marco
    Sankaran, Gregory Kumar
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (01) : 39 - 52
  • [2] The unirationality of the moduli space of K3 surfaces of genus 22
    Gavril Farkas
    Alessandro Verra
    [J]. Mathematische Annalen, 2021, 380 : 953 - 973
  • [3] On unirationality of double covers of fixed degree and large dimension; a method of Ciliberto
    Conte, A
    Marchisio, M
    Murre, JP
    [J]. ALGEBRAIC GEOMETRY -GERMANY: A VOLUME IN MEMORY OF PAOLO FRANCIA, 2002, : 127 - 140
  • [4] THE MODULI SPACE OF GENUS 4 DOUBLE COVERS OF ELLIPTIC-CURVES IS RATIONAL
    BARDELLI, F
    DELCENTINA, A
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1990, 144 (02) : 219 - 227
  • [5] The unirationality of the moduli space of K3 surfaces of genus 22
    Farkas, Gavril
    Verra, Alessandro
    [J]. MATHEMATISCHE ANNALEN, 2021, 380 (3-4) : 953 - 973
  • [6] The Moduli Space of Cyclic Covers in Positive Characteristic
    Dang, Huy
    Hippold, Matthias
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10169 - 10188
  • [7] On the unirationality of moduli spaces of pointed curves
    Hanieh Keneshlou
    Fabio Tanturri
    [J]. Mathematische Zeitschrift, 2021, 299 : 1973 - 1986
  • [8] On the unirationality of moduli spaces of pointed curves
    Keneshlou, Hanieh
    Tanturri, Fabio
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (3-4) : 1973 - 1986
  • [9] A note on the moduli space of polygons
    Mandini, Alessia
    [J]. GEOMETRY AND PHYSICS XVI INTERNATIONAL FALL WORKSHOP, 2008, 1023 : 158 - 162
  • [10] Iterated double covers and connected components of moduli spaces
    Manetti, M
    [J]. TOPOLOGY, 1997, 36 (03) : 745 - 764