Free boson realization of the Dunkl intertwining operator in one dimension

被引:3
|
作者
Vinet, Luc [1 ,2 ]
Zhedanov, Alexei [3 ]
机构
[1] Univ Montreal, Ctr Rech Math, POB 6128,Ctr Ville Stn, Montreal, PQ H3C 3J7, Canada
[2] Inst Valorisat Donnees IVADO, Montreal, PQ H2S 3H1, Canada
[3] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Dunkl intertwining operator; boson realization; generalized Hermite polynomials;
D O I
10.1142/S0129055X22500258
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The operator that intertwines between the Z(2)-Dunkl operator and the derivative is shown to have a realization in terms of the oscillator operators in one dimension. This observation rests on the fact that the Dunkl intertwining operator maps the Hermite polynomials on the generalized Hermite polynomials.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] JORDAN BOSON REPRESENTATION OF THE FERMION FIELDS IN ONE DIMENSION
    APOSTOL, M
    REVUE ROUMAINE DE PHYSIQUE, 1982, 27 (05): : 431 - 449
  • [32] REMARKS ON THE FERMION-BOSON DUALITY IN ONE DIMENSION
    BARSAN, V
    APOSTOL, M
    MANTEA, C
    CORCIOVEI, A
    REVUE ROUMAINE DE PHYSIQUE, 1986, 31 (04): : 387 - 392
  • [33] Properties of boson systems in one dimension: Hard rods
    Miller, MD
    CONDENSED MATTER THEORIES, VOL 15, 2000, 15 : 357 - 366
  • [34] Boson-fermion resonance model in one dimension
    Recati, A
    Fuchs, JN
    Zwerger, W
    PHYSICAL REVIEW A, 2005, 71 (03):
  • [35] Schrodinger operator with point interactions in one dimension
    Mikhailets, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 617 - 618
  • [36] Schrodinger operator with point interactions in one dimension
    Z Angew Math Mech ZAMM, Suppl 2 (617):
  • [37] Boson-conserving one-nucleon transfer operator in the interacting boson model
    Barea, J
    Alonso, CE
    Arias, JM
    PHYSICAL REVIEW C, 2002, 65 (03) : 5
  • [38] FREE BOSON REALIZATION OF UQ(SLN)OVER-CAP
    AWATA, H
    ODAKE, S
    SHIRAISHI, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 162 (01) : 61 - 83
  • [39] Variational approach to the many-boson problem in one dimension
    Krotscheck, E
    Miller, MD
    Wojdylo, J
    PHYSICAL REVIEW B, 1999, 60 (18) : 13028 - 13037
  • [40] Boundary Values of Generalized Harmonic Functions Associated with the Rank-One Dunkl Operator
    Jiaxi Jiu
    Zhongkai Li
    Analysis in Theory and Applications, 2020, 36 (03) : 326 - 347