Zero-shot Hashing with orthogonal projection for image retrieval

被引:27
|
作者
Zhang, Haofeng [1 ]
Long, Yang [2 ]
Shao, Ling [3 ,4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
[2] Newcastle Univ, Sch Comp, Open Lab, Newcastle Upon Tyne, Tyne & Wear, England
[3] IIAI, Abu Dhabi, U Arab Emirates
[4] Univ East Anglia, Sch Comp Sci, Norwich, Norfolk, England
关键词
Zero-shot Hashing; Orthogonal projection; Image retrieval; QUANTIZATION;
D O I
10.1016/j.patrec.2018.04.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing has been widely used in large-scale image retrieval. Supervised information such as semantic similarity and class label, and Convolutional Neural Network (CNN) has greatly improved the quality of hash codes and hash functions. However, due to the explosive growth of web data, existing hashing methods cannot well perform on emerging images of new classes. In this paper, we propose a novel hashing method based on orthogonal projection of both image and semantic attribute, which constrains the generated binary codes in orthogonal space should be orthogonal with each other when they belong to different classes, otherwise be same. This constraint guarantees that the generated hash codes from different categories have equal Hamming distance, which also makes the space more discriminative within limited code length. To improve the performance, we also extend our method with a deep model. Experiments of both our linear and deep model on three popular datasets show that our method can achieve competitive results, specially, the deep model can outperform all the listed state-of-the-art approaches. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:201 / 209
页数:9
相关论文
共 50 条
  • [41] Language-only Efficient Training of Zero-shot Composed Image Retrieval
    Gu, Geonmo
    Chun, Sanghyuk
    Kim, Wonjae
    Kang, Yoohoon
    Yun, Sangdoo
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 13225 - 13234
  • [42] Mining on Heterogeneous Manifolds for Zero-Shot Cross-Modal Image Retrieval
    Yang, Fan
    Wang, Zheng
    Xiao, Jing
    Satoh, Shin'chi
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12589 - 12596
  • [43] Two-stage zero-shot sparse hashing with missing labels for cross-modal retrieval
    Yong, Kailing
    Shu, Zhenqiu
    Wang, Hongbin
    Yu, Zhengtao
    PATTERN RECOGNITION, 2024, 155
  • [44] Contour detection network for zero-shot sketch-based image retrieval
    Qing Zhang
    Jing Zhang
    Xiangdong Su
    Feilong Bao
    Guanglai Gao
    Complex & Intelligent Systems, 2023, 9 : 6781 - 6795
  • [45] Fast Zero-Shot Image Tagging
    Zhang, Yang
    Gong, Boqing
    Shah, Mubarak
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5985 - 5994
  • [46] SitNet: Discrete Similarity Transfer Network for Zero-shot Hashing
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Gao, Yue
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1767 - 1773
  • [47] Zero-Shot Hashing via Asymmetric Ratio Similarity Matrix
    Shi, Yang
    Nie, Xiushan
    Liu, Xingbo
    Yang, Lu
    Yin, Yilong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 5426 - 5437
  • [48] Extreme Reverse Projection Learning for Zero-Shot Recognition
    Guan, Jiechao
    Zhao, An
    Lu, Zhiwu
    COMPUTER VISION - ACCV 2018, PT I, 2019, 11361 : 125 - 141
  • [49] Orthogonal Temporal Interpolation for Zero-Shot Video Recognition
    Zhu, Yan
    Zhuo, Junbao
    Ma, Bin
    Geng, Jiajia
    Wei, Xiaoming
    Wei, Xiaolin
    Wang, Shuhui
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 7491 - 7501
  • [50] JOINT PROJECTION AND SUBSPACE LEARNING FOR ZERO-SHOT RECOGNITION
    Liu, Guangzhen
    Guan, Jiechao
    Zhang, Manli
    Zhang, Jianhong
    Wang, Zihao
    Lu, Zhiwu
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1228 - 1233