Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization

被引:18
|
作者
Yi, Zhitong [1 ]
Luo, Xianglong [1 ]
Chen, Jianyong [1 ]
Chen, Ying [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou Higher Educ Mega Ctr, 100 Waihuan Xi Rd, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Simultaneous optimization; Component configuration; Liquid separation condenser; Electricity production cost; SHELL-AND-TUBE; AIR-CONDITIONING SYSTEM; WORKING FLUID SELECTION; LOW-GRADE HEAT; THERMODYNAMIC ANALYSIS; THERMOECONOMIC OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION; ECONOMIC-ANALYSIS; EXERGY ANALYSIS; OPTIMUM DESIGN;
D O I
10.1016/j.energy.2017.08.060
中图分类号
O414.1 [热力学];
学科分类号
摘要
The organic Rankine cycle (ORC) is a promising method of generating power that utilizes low-enthalpy renewable energy and industrial waste heat. Given that the exergy loss and capital investment cost of heat exchangers account for a large proportion of the components in the ORC, research on the development of novel heat exchangers and configuration optimization coupling with other components and cycle parameters is essential to improve the ORC performance. In this study, an innovative liquid separation condenser (LSC) is incorporated into a waste heat-driven ORC system. A non-convex mixed integer non-linear programming model is formulated to simultaneously optimize the component configurations and system parameters of the LSC-based ORC. The objective is to minimize the electricity production cost of the ORC. The pressure drops of the heat exchangers are directly incorporated into the cycle model instead of ignoring them or constraining them by upper bounds. The physical property parameters of the working fluid are regressed using the Refprop 9.0 database to ensure the optimization of cycle operating variables. A case study is presented to test the proposed methodology and the formulated model. The results achieved using the simultaneous optimization method are compared with the results achieved using the sequential optimization method. The optimization results of the LSC-based ORC are also compared with those of the parallel flow condenser-based ORC. Then the influences of the key structure variables on the optimization results are studied. Finally, a sensitivity analysis of heat source parameters and environmental parameters on the optimization results are conducted. (C) 2017 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:916 / 934
页数:19
相关论文
共 50 条
  • [21] Power generation from waste heat: Ionic liquid-based absorption cycle versus organic Rankine cycle
    Xu, Jiaming
    Scurto, Aaron M.
    Shiflett, Mark B.
    Lustig, Steven R.
    Hung, Francisco R.
    AICHE JOURNAL, 2021, 67 (03)
  • [22] Study of Parameters Optimization of Organic Rankine Cycle (ORC) for Engine Waste Heat Recovery
    Zhang, Hongguang
    Wang, Enhua
    Ouyang, Minggao
    Fan, Boyuan
    ADVANCED MANUFACTURING SYSTEMS, PTS 1-3, 2011, 201-203 : 585 - +
  • [23] Optimization of a Regenerative Organic Rankine Cycle for Engine Waste Heat Recovery by Genetic Algorithm
    Wang, Enhua
    Zhang, Hongguang
    Fan, Boyuan
    Ouyang, Minggao
    Xia, Shengzhi
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL VIII, 2010, : 294 - 298
  • [24] Analysis and optimization of organic Rankine cycle for IC engine waste heat recovery system
    Raghulnath, D.
    Saravanan, K.
    Mahendran, J.
    Kumar, M. Ranjith
    Lakshmanan, P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 30 - 35
  • [25] Optimization of a Regenerative Organic Rankine Cycle for Engine Waste Heat Recovery by Genetic Algorithm
    Wang, Enhua
    Zhang, Hongguang
    Fan, Boyuan
    Ouyang, Minggao
    Xia, Shengzhi
    2011 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION AND INDUSTRIAL APPLICATION (ICIA2011), VOL III, 2011, : 294 - 298
  • [27] Dynamic modeling and optimization of organic Rankine cycle in the waste heat recovery of the hydraulic system
    Gu, Zhengzhao
    Feng, Kewen
    Ge, Lei
    Quan, Long
    ENERGY, 2023, 263
  • [28] Robust optimization of an Organic Rankine Cycle for heavy duty engine waste heat recovery
    Bufi, Elio Antonio
    Camporeale, Sergio Mario
    Cinnella, Paola
    4TH INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS, 2017, 129 : 66 - 73
  • [29] Selection of organic Rankine cycle working fluids in the low-temperature waste heat utilization
    Dian-xun Li
    Shu-sheng Zhang
    Gui-hua Wang
    Journal of Hydrodynamics, 2015, 27 : 458 - 464
  • [30] Selection of organic Rankine cycle working fluids in the low-temperature waste heat utilization
    Li Dian-xun
    Zhang Shu-sheng
    Wang Gui-hua
    JOURNAL OF HYDRODYNAMICS, 2015, 27 (03) : 458 - 464