The impact of severe accident management guidance on the frequency of containment failure modes of a boiling water reactor

被引:0
|
作者
Chen, Kuan-Fu [1 ,3 ]
Wu, Ching-Hui [1 ]
Lee, Min [1 ,2 ]
机构
[1] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu, Taiwan
[2] Inst Nucl Engn & Sci, Hsinchu, Taiwan
[3] Inst Nucl Energy Res, Tao Yuan, Taiwan
关键词
SAMG; PSA; nuclear power plant safety;
D O I
10.13182/NT08-A3915
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Probabilistic safety assessment (PSA) employs a systematic approach to estimate the risk associated with the operation of nuclear power plants (NPPs). Severe accident management guidance (SAMG), which delineates the mitigation actions of core meltdown accidents of NPPs, is developed to support operators and staffs in the technical support centers during the emergency responses of core melt accidents. Proper execution of SAMG could lower the failure probability of containment and reduce the amount of radionuclides released to the environment during the accident. It can be expected that the implementation of SAMG will reduce the risk of NPPs. However, SAMG is not available when most of the conventional level-2 PSA analyses are performed. In the present study, the mitigation actions of SAMG are incorporated into the level-2 PSA model of the ChinShan Nuclear Power Station of the Taiwan Power Company. The NPP analyzed employs a General Electric-designed boiling water reactor-4 with Mark I containment. The effectiveness of the mitigation actions specified in SAMG to terminate the progression of the accident is verified and validated using the MAAP4 code. The containment system event trees and containment phenomenological event trees of the level-2 PSA model are modified to incorporate the new mitigation actions specified in SAMG. The Human Cognitive Reliability (HCR) and Technique for Human Error Rate Prediction (THERP) models are used to quantify the human error probability (HEP) of all the actions in the level-2 PSA model. The MAAP4 code is used to perform thermohydraulic calculations to determine the demand time required in the HEP analysis. The results show that the total frequency of accident progression beyond vessel failure is reduced by 41% and the change in the probability of containment staying intact is not very significant because of the implementation of SAMG. After SAMG implementation, the frequency of containment early failure is reduced by 69.9%. The frequency of suppression pool venting is increased by 77.9%. The changes in the frequency of other containment failure modes are relatively insignificant. The most important human action is specified in Guideline RC/F of Severe Accident Guideline-1, i.e., In-Vessel Injection to Arrest Core Damage.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [21] ANALYTICAL STUDIES OF THERMAL-HYDRAULIC AND RADIONUCLIDE BEHAVIOR IN SEVERE ACCIDENT AT BOILING WATER-REACTOR
    HARAMI, T
    WATANABE, N
    TAKANO, T
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1990, 27 (02) : 174 - 187
  • [22] A sensitivity study of MELCOR nodalization for simulation of in-vessel severe accident progression in a boiling water reactor
    Chen, Yangli
    Zhang, Huimin
    Villanueva, Walter
    Ma, Weimin
    Bechta, Sevostian
    NUCLEAR ENGINEERING AND DESIGN, 2019, 343 : 22 - 37
  • [23] Dynamic event tree analysis of a severe accident sequence in a boiling water reactor experiencing a cyberattack scenario
    Glingler, T.
    Alfonsi, A.
    Mandelli, D.
    Giannetti, F.
    Caruso, G.
    D'Onorio, M.
    ANNALS OF NUCLEAR ENERGY, 2023, 192
  • [24] USE OF AN INFLUENCE DIAGRAM AND FUZZY PROBABILITY FOR EVALUATING ACCIDENT MANAGEMENT IN A BOILING WATER-REACTOR
    YU, D
    KASTENBERG, WE
    OKRENT, D
    NUCLEAR TECHNOLOGY, 1994, 106 (03) : 315 - 325
  • [25] ANALYZING THE ROD DROP ACCIDENT IN A BOILING WATER-REACTOR
    CHENG, HS
    DIAMOND, DJ
    NUCLEAR TECHNOLOGY, 1982, 56 (01) : 40 - 54
  • [26] A model of silver-iodine reactions in a light water reactor containment sump under severe accident conditions
    Krausmann, E
    Drossinos, Y
    JOURNAL OF NUCLEAR MATERIALS, 1999, 264 (1-2) : 113 - 121
  • [27] SIMPLIFICATION OF THE SEVERE ACCIDENT MANAGEMENT GUIDELINE FOR THE CONTAINMENT FLOODING IN A MARK-III CONTAINMENT
    Chuang, Min-Jie
    Wang, Shih-Jen
    Fann, Sheng-Yuan
    Chiang, Show-Chyuan
    NUCLEAR TECHNOLOGY, 2009, 167 (02) : 247 - 253
  • [28] Passive containment cooling system performance in the Simplified Boiling Water Reactor
    Shiralkar, BS
    Gamble, RE
    Yadigaroglu, G
    PROCEEDINGS OF THE INTERNATIONAL TOPICAL MEETING ON ADVANCED REACTORS SAFETY, VOLS 1 AND 2, 1997, : 478 - 484
  • [29] FISSION-PRODUCT AEROSOLS IN THE REACTOR CONTAINMENT UNDER SEVERE ACCIDENT CONDITIONS
    KUCZERA, B
    ALBRECHT, H
    BUNZ, H
    SCHOCK, W
    KERNTECHNIK, 1988, 53 (01) : 59 - 68
  • [30] Development of severe accident management guidance for NPP in Korea
    Kim, M
    Hong, S
    Lee, K
    Byun, C
    Jin, Y
    PROBABILISTIC SAFETY ASSESSMENT AND MANAGEMENT, VOL I AND II, PROCEEDINGS, 2002, : 1667 - 1673