Numerical semigroups whose fractions are of maximal embedding dimension

被引:7
|
作者
Dobbs, David E. [1 ]
Smith, Harold J. [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Thomas More Coll, Dept Math & Phys, Crestview Hills, KY 41017 USA
关键词
Numerical semigroup; Maximal embedding dimension; Arf numerical semigroup; Saturated numerical semigroup; Multiplicity; Frobenius number; Fractionally closed; ONE HALF;
D O I
10.1007/s00233-010-9275-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Each saturated (resp., Arf) numerical semigroup S has the property that each of its fractions S/k is saturated (resp., Arf), but the property of being of maximal embedding dimension (MED) is not stable under formation of fractions. If S is a numerical semigroup, then S is MED (resp., Arf; resp., saturated) if and only if, for each 2 <= k is an element of N, S = T/k for infinitely many MED (resp., Arf; resp., saturated) numerical semigroups T. Let A (resp., F) be the class of Arf numerical semigroups (resp., of numerical semigroups each of whose fractions is of maximal embedding dimension). Then there exists an infinite strictly ascending chain A = C-1 subset of C-2 subset of C-3 subset of ... subset of F, where, like A and F, each C-n is stable under the formation of fractions.
引用
收藏
页码:412 / 422
页数:11
相关论文
共 50 条
  • [21] Delta sets for nonsymmetric numerical semigroups with embedding dimension three
    Garcia-Sanchez, Pedro A.
    Llena, David
    Moscariello, Alessio
    FORUM MATHEMATICUM, 2018, 30 (01) : 15 - 30
  • [22] Delta sets for symmetric numerical semigroups with embedding dimension three
    P. A. García-Sánchez
    D. Llena
    A. Moscariello
    Aequationes mathematicae, 2017, 91 : 579 - 600
  • [23] THE FROBENIUS PROBLEM FOR NUMERICAL SEMIGROUPS WITH EMBEDDING DIMENSION EQUAL TO THREE
    Robles-Perez, Aurelian M.
    Rosales, Jose Carlos
    MATHEMATICS OF COMPUTATION, 2012, 81 (279) : 1609 - 1617
  • [24] On the number of L-shapes in embedding dimension four numerical semigroups
    Aguilo-Gost, F.
    Garcia-Sanchez, P. A.
    Llena, D.
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2168 - 2178
  • [25] Numerical semigroups with large embedding dimension satisfy Wilf’s conjecture
    Alessio Sammartano
    Semigroup Forum, 2012, 85 : 439 - 447
  • [26] Numerical semigroups with large embedding dimension satisfy Wilf's conjecture
    Sammartano, Alessio
    SEMIGROUP FORUM, 2012, 85 (03) : 439 - 447
  • [27] The frobenius problem for some numerical semigroups with embedding dimension equal to three
    Robles-Perez, Aureliano M.
    Carlos Rosales, Jose
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (04): : 901 - 908
  • [28] MAXIMAL DENUMERANT OF A NUMERICAL SEMIGROUP WITH EMBEDDING DIMENSION LESS THAN FOUR
    Bryant, Lance
    Hamblin, James
    Jones, Lenny
    JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (04) : 489 - 503
  • [29] Semigroups with fixed multiplicity and embedding dimension
    Ignacio Garcia-Garcia, Juan
    Marin-Aragon, Daniel
    Angeles Moreno-Frias, Maria
    Carlos Rosales, Jose
    Vigneron-Tenorio, Alberto
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 397 - 417
  • [30] Affine semigroups of maximal projective dimension
    Bhardwaj, Om Prakash
    Goel, Kriti
    Sengupta, Indranath
    COLLECTANEA MATHEMATICA, 2023, 74 (03) : 703 - 727