Quench Dynamics and Bulk-Edge Correspondence in Nonlinear Mechanical Systems

被引:14
|
作者
Ezawa, Motohiko [1 ]
机构
[1] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
关键词
STATES;
D O I
10.7566/JPSJ.90.114605
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a topological physics in a one-dimensional nonlinear system by taking an instance of a mechanical rotator model with alternating spring constants. This nonlinear model is smoothly connected to an acoustic model described by the Su-Schrieffer-Heeger model in the linear limit. We numerically show that quench dynamics of the kinetic and potential energies for the nonlinear model is well understood in terms of the topological and trivial phases defined in the associated linearized model. It indicates phenomenologically the emergence of the edge state in the topological phase even for the nonlinear system, which may be the bulk-edge correspondence in nonlinear system.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Bulk-edge correspondence for point-gap topological phases in junction systems
    Hwang G.
    Obuse H.
    Physical Review B, 2023, 108 (12)
  • [32] Bulk-edge correspondence recovered in incompressible geophysical flows
    Onuki, Yohei
    Venaille, Antoine
    Delplace, Pierre
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [33] Physical Violations of the Bulk-Edge Correspondence in Topological Electromagnetics
    Gangaraj, S. Ali Hassani
    Monticone, Francesco
    PHYSICAL REVIEW LETTERS, 2020, 124 (15)
  • [34] Spectral flows of Toeplitz operators and bulk-edge correspondence
    Braverman, Maxim
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (10) : 2271 - 2289
  • [35] Spectral flows of Toeplitz operators and bulk-edge correspondence
    Maxim Braverman
    Letters in Mathematical Physics, 2019, 109 : 2271 - 2289
  • [36] Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems
    Rudner, Mark S.
    Lindner, Netanel H.
    Berg, Erez
    Levin, Michael
    PHYSICAL REVIEW X, 2013, 3 (03):
  • [37] Identifying anomalous Floquet edge modes via bulk-edge correspondence
    Wang, Huanyu
    Liu, Wuming
    CHINESE PHYSICS B, 2020, 29 (04)
  • [38] Identifying anomalous Floquet edge modes via bulk-edge correspondence
    王寰宇
    刘伍明
    Chinese Physics B, 2020, 29 (04) : 495 - 499
  • [39] Topological Edge States and Bulk-edge Correspondence in Dimerized Toda Lattice
    Ezawa, Motohiko
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (02)
  • [40] Bulk-edge correspondence for unbounded Dirac-Landau operators
    Cornean, H. D.
    Moscolari, M.
    Sorensen, K. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (02)