An Imputation Method for Missing Data Based on an Extreme Learning Machine Auto-Encoder

被引:25
|
作者
Lu, Cheng-Bo [1 ]
Mei, Ying [1 ]
机构
[1] Lishui Univ, Coll Engn, Lishui 323000, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
关键词
Imputation; extreme learning machine; auto-encoder; generalized mean absolute deviation; purity; K-means clustering; CLASSIFICATION; REGRESSION; NETWORKS; SCHEME;
D O I
10.1109/ACCESS.2018.2868729
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an imputation method for missing data based on an extreme learning machine auto-encoder (ELM-AE). The imputation chooses a set of plausible values determined by ELM-AE and then substitutes the average of these plausible values for the missing values. To compare the performance of ELM-AE imputation with the three other widely used imputation techniques, we conducted comprehensive experiments using seven UCI benchmark data sets. The proposed ELM-AE imputation approach proved to be superior to the other three methods based on the results using these data sets.
引用
收藏
页码:52930 / 52935
页数:6
相关论文
共 50 条
  • [21] Data imputation in IoT using Spatio-Temporal Variational Auto-Encoder
    Zhang, Shuo
    Chen, Jinyi
    Chen, Jiayuan
    Chen, Xiaofei
    Huang, Hejiao
    [J]. NEUROCOMPUTING, 2023, 529 : 23 - 32
  • [22] ExtraImpute: A Novel Machine Learning Method for Missing Data Imputation
    Alabadla, Mustafa
    Sidi, Fatimah
    Ishak, Iskandar
    Ibrahim, Hamidah
    Affendey, Lilly Suriani
    Hamdan, Hazlina
    [J]. JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2022, 13 (05) : 470 - 476
  • [23] An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning
    Wang, Yueqing
    Xie, Zhige
    Xu, Kai
    Dou, Yong
    Lei, Yuanwu
    [J]. NEUROCOMPUTING, 2016, 174 : 988 - 998
  • [24] Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
    Shao Haidong
    Jiang Hongkai
    Li Xingqiu
    Wu Shuaipeng
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 140 : 1 - 14
  • [25] Machine Learning Based Missing Data Imputation in Categorical Datasets
    Ishaq, Muhammad
    Zahir, Sana
    Iftikhar, Laila
    Bulbul, Mohammad Farhad
    Rho, Seungmin
    Lee, Mi Young
    [J]. IEEE ACCESS, 2024, 12 : 88332 - 88344
  • [26] Data Reconstruction Based on Supervised Deep Auto-Encoder
    Rui, Ting
    Zhang, Sai
    Ren, Tongwei
    Tang, Jian
    Zou, Junhua
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 869 - 879
  • [27] A METHOD FOR FACE FUSION BASED ON VARIATIONAL AUTO-ENCODER
    Li, Xiang
    Wen, Jin-Mei
    Chen, An-Long
    Chen, Bo
    [J]. 2018 15TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2018, : 77 - 80
  • [28] Hyperspectral Anomaly Detection Method Based on Auto-encoder
    Bati, Emrecan
    Caliskan, Akin
    Koz, Alper
    Alatan, A. Aydin
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
  • [29] Pulmonary Nodules Segmentation Method Based on Auto-encoder
    Zhang, Guodong
    Guo, Mao
    Gong, Zhaoxuan
    Bi, Jing
    Kim, Yoohwan
    Guo, Wei
    [J]. TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [30] Fuzzy One-Class Extreme Auto-encoder
    Hualong Yu
    Dan Sun
    Xiaoyan Xi
    Xibei Yang
    Shang Zheng
    Qi Wang
    [J]. Neural Processing Letters, 2019, 50 : 701 - 727