Machine Learning-based End-to-End QoE Monitoring Using Active Network Probing

被引:1
|
作者
Miranda, Gilson, Jr. [1 ,2 ]
Municio, Esteban [1 ]
Marquez-Barja, Johann M. [1 ]
Macedo, Daniel Fernandes [2 ]
机构
[1] Univ Antwerp, IDLab, Fac Appl Engn, IMEC, Antwerp, Belgium
[2] Univ Fed Minas Gerais, Comp Sci Dept, Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会; 欧盟地平线“2020”;
关键词
DASH Video; QoE; Machine Learning;
D O I
10.1109/ICIN53892.2022.9758123
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Video on Demand (VoD) is responsible for a significant amount of traffic on IP networks. To meet users' expectations, network operators need means to monitor and to identify when service quality is degraded in order to take actions to avoid customer churn. Many proposals in the literature correlate network Quality of Service (QoS) metrics with indicators of user Quality of Experience (QoE). However, most solutions cannot monitor end-to-end conditions without modification on video player applications or require deep packet inspection techniques, which may raise privacy issues. In previous work, we proposed a method to estimate QoE using active ICMP probing, which is widely supported by network devices and can be used for end-to-end network measurements. In this work, we improve our previous method by adding a secondary model that operates over the first step of QoE inferences. We also extend the evaluation of our approach by using two wireless and wired testbeds, reporting our results for different end-to-end setups subject to distinct connectivity conditions. Finally, we identify and discuss the advantages and limitations of our methods and assess their suitability in real-world production deployments.
引用
下载
收藏
页码:40 / 47
页数:8
相关论文
共 50 条
  • [31] End-to-end residual learning-based deep neural network model deployment for human activity recognition
    Alok Negi
    Krishan Kumar
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [32] A Learning-Based End-to-End Wireless Communication System Utilizing a Deep Neural Network Channel Module
    An, Yongli
    Wang, Shaomeng
    Zhao, Li
    Ji, Zhanlin
    Ganchev, Ivan
    IEEE ACCESS, 2023, 11 : 17441 - 17453
  • [33] Efficient monitoring of end-to-end network properties
    Chua, DB
    Kolaczyk, ED
    Crovella, M
    IEEE INFOCOM 2005: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2005, : 1701 - 1711
  • [34] End-to-end residual learning-based deep neural network model deployment for human activity recognition
    Negi, Alok
    Kumar, Krishan
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (01)
  • [35] End-to-End Depth-Guided Relighting Using Lightweight Deep Learning-Based Method
    Nathan, Sabari
    Kansal, Priya
    JOURNAL OF IMAGING, 2023, 9 (09)
  • [36] End-to-End Deep Learning-Based Human Activity Recognition Using Channel State Information
    Hsieh, Chaur-Heh
    Chen, Jen-Yang
    Kuo, Chung-Ming
    Wang, Ping
    JOURNAL OF INTERNET TECHNOLOGY, 2021, 22 (02): : 271 - 281
  • [37] Deep Learning-Based End-to-End Language Development Screening for Children Using Linguistic Knowledge
    Oh, Byoung-Doo
    Lee, Yoon-Kyoung
    Kim, Jong-Dae
    Park, Chan-Young
    Kim, Yu-Seop
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [38] An End-to-end Intelligent Network Resource Allocation in IoV: A Machine Learning Approach
    Muhammad, Afaq
    Khan, Talha Ahmed
    Abbass, Khizar
    Song, Wang-Cheol
    2020 IEEE 92ND VEHICULAR TECHNOLOGY CONFERENCE (VTC2020-FALL), 2020,
  • [39] Seesaw: End-to-end Dynamic Sensing for IoT using Machine Learning
    Goyal, Vidushi
    Bertacco, Valeria
    Das, Reetuparna
    PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
  • [40] Machine Learning Based End-to-End Constellation Training for Communication Systems
    Lin, Po-Chiang
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1768 - 1773