Motion planning in velocity affine mechanical systems

被引:5
|
作者
Jakubiak, Janusz [1 ]
Tchon, Krzysztof [1 ]
Magiera, Wladyslaw [1 ]
机构
[1] Wroclaw Univ Technol, Inst Comp Engn Control & Robot, PL-50372 Wroclaw, Poland
关键词
mechanical system; position; orientation; motion planning; continuation method; MOBILE MANIPULATORS; SPACE APPROACH;
D O I
10.1080/00207179.2010.501390
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the motion planning problem in specific mechanical systems whose linear and angular velocities depend affinely on control. The configuration space of these systems encompasses the rotation group, and the motion planning involves the system orientation. Derivation of the motion planning algorithm for velocity affine systems has been inspired by the continuation method. Performance of this algorithm is illustrated with examples of the kinematics of a serial nonholonomic manipulator, the plate-ball kinematics and the attitude control of a rigid body.
引用
收藏
页码:1965 / 1974
页数:10
相关论文
共 50 条
  • [1] Affine Geometric Heat Flow and Motion Planning for Dynamic Systems
    Liu, Shenyu
    Fan, Yinai
    Belabbas, Mohamed-Ali
    IFAC PAPERSONLINE, 2019, 52 (16): : 168 - 173
  • [2] Velocity space approach to motion planning of nonholonomic systems
    Duleba, Ignacy
    Khefifi, Wissem
    ROBOTICA, 2007, 25 : 359 - 366
  • [3] Motion Planning for Variable Inertia Mechanical Systems
    Shammas, Elie A.
    Choset, Howie
    Rizzi, Alfred A.
    ALGORITHMIC FOUNDATION OF ROBOTICS VII, 2008, 47 : 375 - 390
  • [4] Motion planning for variable inertia mechanical systems
    Shammas, Elie A.
    Choset, Howie
    Rizzi, Alfred A.
    UNMANNED SYSTEMS TECHNOLOGY VIII, PTS 1 AND 2, 2006, 6230
  • [5] Motion planning by the homotopy continuation method for control-affine systems
    Amiss, Scott C.
    Guay, Martin
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 1767 - 1772
  • [6] Global Controllability Criteria and Motion Planning of Regular Affine Systems With Drifts
    Ji, Zhengping
    Zhang, Xiao
    Cheng, Daizhan
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2581 - 2586
  • [7] Adaptive motion/force control of nonholonomic mechanical systems with affine constraints
    Sun, Wei
    Wu, Yuqiang
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2014, 19 (04): : 646 - 659
  • [8] Periodic motion planning and control for underactuated mechanical systems
    Wang, Zeguo
    Freidovich, Leonid B.
    Zhang, Honghua
    INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (06) : 1350 - 1362
  • [9] Stabilization of the Motion of Affine Systems
    Babenko, E. A.
    Martynyuk, A. A.
    INTERNATIONAL APPLIED MECHANICS, 2016, 52 (04) : 413 - 421
  • [10] COMPLEXITY OF CONTROL-AFFINE MOTION PLANNING
    Jean, F.
    Prandi, D.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (02) : 816 - 844