Global Controllability Criteria and Motion Planning of Regular Affine Systems With Drifts

被引:0
|
作者
Ji, Zhengping [1 ,2 ]
Zhang, Xiao [3 ,4 ]
Cheng, Daizhan [4 ]
机构
[1] Univ Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
来源
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Global controllability; geometric control theory; affine nonlinear systems; motion planning; homotopy continuation method;
D O I
10.1109/LCSYS.2023.3287949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we give a condition for the global controllability of affine nonlinear control systems with drifts on Euclidean spaces. Under regularity assumptions, the condition is necessary and sufficient in the codimension-1 and codimension-2 cases, and holds for systems of higher codimensions under mild restrictions. We then investigate motion planning problems for codimension-1 affine systems, and give proof of the global existence of the lift to control curves for certain drifted systems using the homotopy continuation method.
引用
收藏
页码:2581 / 2586
页数:6
相关论文
共 50 条
  • [1] Global Controllability of Switched Affine Systems
    Cheng, Daizhan
    EMERGENT PROBLEMS IN NONLINEAR SYSTEMS AND CONTROL, 2009, 393 : 141 - 167
  • [2] On global controllability of planar affine nonlinear systems
    Sun, Yimin
    Guo, Lei
    Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 1765 - 1769
  • [3] Motion planning for control-affine systems satisfying low-order controllability conditions
    Zuyev, Alexander
    Grushkovskaya, Victoria
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (11) : 2517 - 2537
  • [4] On global controllability for a class of polynomial affine nonlinear systems
    Yimin Sun
    Journal of Control Theory and Applications, 2012, 10 (3): : 332 - 336
  • [5] On global controllability of planar affine nonlinear systems with a singularity
    Sun, Yimin
    Mei, Shengwei
    Lu, Qiang
    SYSTEMS & CONTROL LETTERS, 2009, 58 (02) : 124 - 127
  • [6] Further results on global controllability of affine nonlinear systems
    Sun, Yimin
    Gu, Lei
    Lu, Qiang
    Mei, Shengwei
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1482 - +
  • [7] On global asymptotic controllability of planar affine nonlinear systems
    Yimin Sun
    Lei Guo
    Science in China Series F: Information Sciences, 2005, 48 : 703 - 712
  • [8] On global asymptotic controllability of planar affine nonlinear systems
    SUN Yimin & GUO Lei Institute of Systems Science
    Science in China(Series F:Information Sciences), 2005, (06) : 703 - 712
  • [9] On global asymptotic controllability of planar affine nonlinear systems
    Sun, YM
    Guo, L
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2005, 48 (06): : 703 - 712
  • [10] Motion planning in velocity affine mechanical systems
    Jakubiak, Janusz
    Tchon, Krzysztof
    Magiera, Wladyslaw
    INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (09) : 1965 - 1974