Deep learning for mass detection in Full Field Digital Mammograms

被引:77
|
作者
Agarwal, Richa [1 ]
Diaz, Oliver [1 ,2 ]
Yap, Moi Hoon [3 ]
Llado, Xavier [1 ]
Marti, Robert [1 ]
机构
[1] Univ Girona, Dept Comp Architecture & Technol, VICOROB, Girona, Spain
[2] Univ Barcelona, Dept Math & Comp Sci, Barcelona, Spain
[3] Manchester Metropolitan Univ, Dept Comp & Math, Manchester, Lancs, England
关键词
Deep learning; CNN; Mammogram; FFDM; Mass detection; CLASSIFICATION; SEGMENTATION; DIAGNOSIS;
D O I
10.1016/j.compbiomed.2020.103774
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, the use of Convolutional Neural Networks (CNNs) in medical imaging has shown improved performance in terms of mass detection and classification compared to current state-of-the-art methods. This paper proposes a fully automated framework to detect masses in Full-Field Digital Mammograms (FFDM). This is based on the Faster Region-based Convolutional Neural Network (Faster-RCNN) model and is applied for detecting masses in the large-scale OPTIMAM Mammography Image Database (OMI-DB), which consists of similar to 80,000 FFDMs mainly from Hologic and General Electric (GE) scanners. This research is the first to benchmark the performance of deep learning on OMI-DB. The proposed framework obtained a True Positive Rate (TPR) of 0.93 at 0.78 False Positive per Image (FPI) on FFDMs from the Hologic scanner. Transfer learning is then used in the Faster R-CNN model trained on Hologic images to detect masses in smaller databases containing FFDMs from the GE scanner and another public dataset INbreast (Siemens scanner). The detection framework obtained a TPR of 0.91 +/- 0.06 at 1.69 FPI for images from the GE scanner and also showed higher performance compared to state-of-the-art methods on the INbreast dataset, obtaining a TPR of 0.99 +/- 0.03 at 1.17 FPI for malignant and 0.85 +/- 0.08 at 1.0 FPI for benign masses, showing the potential to be used as part of an advanced CAD system for breast cancer screening.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Applying Deep Learning for the Detection of Abnormalities in Mammograms
    Wessels, Steven
    van der Haar, Dustin
    INFORMATION SCIENCE AND APPLICATIONS, 2020, 621 : 201 - 210
  • [32] Deep Learning Based Lesion Detection For Mammograms
    Cao, Zhenjie
    Yang, Zhicheng
    Liu, Xinya
    Zhang, Yanbo
    Wu, Shibin
    Lin, Ruei-Sung
    Huang, Lingyun
    Han, Mei
    Ma, Jie
    2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 376 - 378
  • [33] Automated Breast Cancer Detection in Digital Mammograms of Various Densities via Deep Learning
    Suh, Yong Joon
    Jung, Jaewon
    Cho, Bum-Joo
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 11
  • [34] Comparison of Tilt Correction Methods in Full Field Digital Mammograms
    Kallenberg, Michiel
    Karssemeijer, Nico
    DIGITAL MAMMOGRAPHY, 2010, 6136 : 191 - 196
  • [35] A New GLLD Operator for Mass Detection in Digital Mammograms
    Gargouri, N.
    Masmoudi, A. Dammak
    Masmoudi, D. Sellami
    Abid, R.
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2012, 2012 (2012)
  • [36] Transformer-based mass detection in digital mammograms
    Betancourt Tarifa A.S.
    Marrocco C.
    Molinara M.
    Tortorella F.
    Bria A.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (03) : 2723 - 2737
  • [37] Deep Learning and Structured Prediction for the Segmentation of Mass in Mammograms
    Dhungel, Neeraj
    Carneiro, Gustavo
    Bradley, Andrew P.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 : 605 - 612
  • [38] DEEP STRUCTURED LEARNING FOR MASS SEGMENTATION FROM MAMMOGRAMS
    Dhungel, Neeraj
    Carneiro, Gustavo
    Bradley, Andrew P.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2950 - 2954
  • [39] Microcalcification detection in full-field digital mammograms: A fully automated computer-aided system
    Basile, T. M. A.
    Fanizzi, A.
    Losurdo, L.
    Bellotti, R.
    Bottigli, U.
    Dentamaro, R.
    Didonna, V
    Fausto, A.
    Massafra, R.
    Moschetta, M.
    Tamborra, P.
    Tangaro, S.
    La Forgia, D.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2019, 64 : 1 - 9
  • [40] Computer-aided detection (CAD) of breast cancer on full field digital and screening film mammograms
    Sun, XJ
    Qian, W
    Song, XS
    Qian, YY
    Song, DS
    Clark, RA
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 930 - 939