Deep learning for mass detection in Full Field Digital Mammograms

被引:77
|
作者
Agarwal, Richa [1 ]
Diaz, Oliver [1 ,2 ]
Yap, Moi Hoon [3 ]
Llado, Xavier [1 ]
Marti, Robert [1 ]
机构
[1] Univ Girona, Dept Comp Architecture & Technol, VICOROB, Girona, Spain
[2] Univ Barcelona, Dept Math & Comp Sci, Barcelona, Spain
[3] Manchester Metropolitan Univ, Dept Comp & Math, Manchester, Lancs, England
关键词
Deep learning; CNN; Mammogram; FFDM; Mass detection; CLASSIFICATION; SEGMENTATION; DIAGNOSIS;
D O I
10.1016/j.compbiomed.2020.103774
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, the use of Convolutional Neural Networks (CNNs) in medical imaging has shown improved performance in terms of mass detection and classification compared to current state-of-the-art methods. This paper proposes a fully automated framework to detect masses in Full-Field Digital Mammograms (FFDM). This is based on the Faster Region-based Convolutional Neural Network (Faster-RCNN) model and is applied for detecting masses in the large-scale OPTIMAM Mammography Image Database (OMI-DB), which consists of similar to 80,000 FFDMs mainly from Hologic and General Electric (GE) scanners. This research is the first to benchmark the performance of deep learning on OMI-DB. The proposed framework obtained a True Positive Rate (TPR) of 0.93 at 0.78 False Positive per Image (FPI) on FFDMs from the Hologic scanner. Transfer learning is then used in the Faster R-CNN model trained on Hologic images to detect masses in smaller databases containing FFDMs from the GE scanner and another public dataset INbreast (Siemens scanner). The detection framework obtained a TPR of 0.91 +/- 0.06 at 1.69 FPI for images from the GE scanner and also showed higher performance compared to state-of-the-art methods on the INbreast dataset, obtaining a TPR of 0.99 +/- 0.03 at 1.17 FPI for malignant and 0.85 +/- 0.08 at 1.0 FPI for benign masses, showing the potential to be used as part of an advanced CAD system for breast cancer screening.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Regularized discriminant analysis for breast mass detection on full field digital mammograms
    Wei, Jun
    Sahiner, Berkman
    Zhang, Yiheng
    Chan, Heang-Ping
    Hadjiiski, Lubomir M.
    Zhou, Chuan
    Ge, Jun
    Wu, Yi-Ta
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [2] Deep Learning Based Mass Detection in Mammograms
    Cao, Zhenjie
    Yang, Zhicheng
    Zhang, Yanbo
    Lin, Ruei-Sung
    Wu, Shibin
    Huang, Lingyun
    Han, Mei
    Ma, Jie
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [3] Automatic Dual-View Mass Detection in Full-Field Digital Mammograms
    Amit, Guy
    Hashoul, Sharbell
    Kisilev, Pavel
    Ophir, Boaz
    Walach, Eugene
    Zlotnick, Aviad
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 : 44 - 52
  • [4] A deep learning method for volumetric breast density estimation from processed Full Field Digital Mammograms
    Vanegas, Doiriel C.
    Birhanu, Mahlet A.
    Karssemeijer, Nico
    Gubern-Merida, Albert
    Kallenberg, Michiel
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [5] Computer aided detection of clusters of microcalcifications on full field digital mammograms
    Ge, Jun
    Sahiner, Berkman
    Hadjiiski, Lubomir M.
    Chan, Heang-Ping
    Wei, Jun
    Helvie, Mark A.
    Zhou, Chuan
    MEDICAL PHYSICS, 2006, 33 (08) : 2975 - 2988
  • [6] A Comparison Study of Deep Learning Techniques for Mass Detection in Mammograms
    Noro, K.
    Zhang, X.
    Takano, H.
    Ichiji, K.
    Homma, N.
    MEDICAL PHYSICS, 2019, 46 (06) : E347 - E347
  • [7] Mass Detection in Mammograms Using a Robust Deep Learning Model
    Singh, Vivek Kumar
    Abdel-Nasser, Mohamed
    Rashwan, Hatem A.
    Akram, Farhan
    Haffar, Rami
    Pandey, Nidhi
    Sarker, Md Mostafa Kamal
    Kohan, Sebastian
    Guma, Josep
    Romani, Santiago
    Puig, Domenec
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 319 : 365 - 372
  • [8] Deep Learning Hyperparameter Optimization for Breast Mass Detection in Mammograms
    Sehgal, Adarsh
    Sehgal, Muskan
    La, Hung Manh
    Bebis, George
    ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT II, 2022, 13599 : 270 - 283
  • [9] Combining Deep Convolutional Networks and SVMs for Mass Detection on Digital Mammograms
    Wichakam, Itsara
    Vateekul, Peerapon
    2016 8TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST), 2016, : 239 - 244
  • [10] Breast density assessment via deep learning: Head-to-head model comparisons in full-field digital mammograms and synthetic mammograms
    Anant, Krisha
    Lopez, Juanita Hernandez
    Das Gupta, Sneha
    Bennett, Debbie L.
    Gastounioti, Aimilia
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927