Extreme values of the Poisson's ratio of cubic crystals

被引:24
|
作者
Epishin, A. I. [1 ]
Lisovenko, D. S. [2 ]
机构
[1] Tech Univ Berlin, D-10587 Berlin, Germany
[2] Russian Acad Sci, Ishlinsky Inst Problems Mech, Moscow 119526, Russia
关键词
AUXETICS; ALLOYS;
D O I
10.1134/S1063784216100121
中图分类号
O59 [应用物理学];
学科分类号
摘要
The problem of determining the extrema of Poisson's ratio for cubic crystals is considered, and analytical expressions are derived to calculate its extreme values. It follows from the obtained solution that, apart from extreme values at standard orientations, extreme values of Poisson's ratio can also be detected at special orientations deviated from the standard ones. The derived analytical expressions are used to calculate the extreme values of Poisson's ratio for a large number of known cubic crystals. The extremely high values of Poisson's ratio are shown to be characteristic of metastable crystals, such as crystals with the shape memory effect caused by martensitic transformation. These crystals are mainly represented by metallic alloys. For some crystals, the absolute extrema of Poisson's ratio can exceed the standard values, which are-1 for a standard minimum and +2 for a standard maximum.
引用
收藏
页码:1516 / 1524
页数:9
相关论文
共 50 条
  • [21] Negative Poisson's ratio in cubic materials along principal directions
    Ho, Duc Tam
    Park, Soon-Dong
    Kwon, Soon-Yong
    Han, Tong-Seok
    Kim, Sung Youb
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (07): : 1288 - 1294
  • [22] Young's modulus surface and Poisson is ratio curve for cubic metals
    Zhang, Jian-Min
    Zhang, Yan
    Xu, Ke-Wei
    Ji, Vincent
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2007, 68 (04) : 503 - 510
  • [23] Extreme values of Young's modulus of tetragonal crystals
    Gorodtsov, Valentin A.
    Tkachenko, Valentin G.
    Lisovenko, Dmitry S.
    MECHANICS OF MATERIALS, 2021, 154
  • [24] Unconventional approach to determination of anisotropic Poisson's ratios in cubic crystals
    Belomestnykh, V. N.
    Soboleva, E. G.
    LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2012, 2 (01): : 13 - 16
  • [25] Variability of Young's modulus and Poisson's ratio of hexagonal crystals
    Komarova, M. A.
    Gorodtsov, V. A.
    Lisovenko, D. S.
    THIRD INTERNATIONAL YOUTH SCIENTIFIC FORUM WITH INTERNATIONAL PARTICIPATION NEW MATERIALS, 2018, 347
  • [26] A microscopic model of a negative Poisson's ratio in some crystals
    Ishibashi, Y
    Iwata, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (08) : 2702 - 2703
  • [27] Poisson's ratio of binary and polydisperse soft disk crystals
    Tretiakov, Konstantin V.
    Wojciechowski, Krzysztof W.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (35-39) : 4484 - 4487
  • [28] Average Poisson's ratio for crystals. Hexagonal auxetics
    Goldstein, R. V.
    Gorodtsov, V. A.
    Lisovenko, D. S.
    LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2013, 3 (01): : 7 - 11
  • [29] Poisson's ratio in layered two-dimensional crystals
    Woo, Sungjong
    Park, Hee Chul
    Son, Young-Woo
    PHYSICAL REVIEW B, 2016, 93 (07)
  • [30] Young’s modulus surface and Poisson’s ratio curve for tetragonal crystals
    张建民
    张研
    徐可为
    Ji Vincent
    Chinese Physics B, 2008, (05) : 1565 - 1573