Extreme values of the Poisson's ratio of cubic crystals

被引:24
|
作者
Epishin, A. I. [1 ]
Lisovenko, D. S. [2 ]
机构
[1] Tech Univ Berlin, D-10587 Berlin, Germany
[2] Russian Acad Sci, Ishlinsky Inst Problems Mech, Moscow 119526, Russia
关键词
AUXETICS; ALLOYS;
D O I
10.1134/S1063784216100121
中图分类号
O59 [应用物理学];
学科分类号
摘要
The problem of determining the extrema of Poisson's ratio for cubic crystals is considered, and analytical expressions are derived to calculate its extreme values. It follows from the obtained solution that, apart from extreme values at standard orientations, extreme values of Poisson's ratio can also be detected at special orientations deviated from the standard ones. The derived analytical expressions are used to calculate the extreme values of Poisson's ratio for a large number of known cubic crystals. The extremely high values of Poisson's ratio are shown to be characteristic of metastable crystals, such as crystals with the shape memory effect caused by martensitic transformation. These crystals are mainly represented by metallic alloys. For some crystals, the absolute extrema of Poisson's ratio can exceed the standard values, which are-1 for a standard minimum and +2 for a standard maximum.
引用
收藏
页码:1516 / 1524
页数:9
相关论文
共 50 条
  • [1] Extreme values of the Poisson’s ratio of cubic crystals
    A. I. Epishin
    D. S. Lisovenko
    Technical Physics, 2016, 61 : 1516 - 1524
  • [2] Extreme values of Poisson's ratio for triclinic and monoclinic crystals
    Volkov, M. A.
    LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2014, 4 (03): : 167 - 170
  • [3] Extreme values of Young's modulus and Poisson's ratio of hexagonal crystals
    Gorodtsov, Valentin A.
    Lisovenko, Dmitry S.
    MECHANICS OF MATERIALS, 2019, 134 : 1 - 8
  • [4] On the extreme values of Young's modulus, the shear modulus, and Poisson's ratio for cubic materials
    Hayes, M
    Shuvalov, A
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1998, 65 (03): : 786 - 787
  • [5] On the extreme values of Young's modulus, the shear modulus, and Poisson's ratio for cubic materials
    Univ of Coll Dublin, Dublin, United Kingdom
    Journal of Applied Mechanics, Transactions ASME, 1998, 65 (03): : 786 - 787
  • [6] Poisson's ratio for tetragonal, hexagonal, and cubic crystals
    Ballato, A
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1996, 43 (01) : 56 - 62
  • [7] Negative Poisson's Ratio for Cubic Crystals and Nano/Microtubes
    Goldstein, R. V.
    Gorodtsov, V. A.
    Lisovenko, D. S.
    Volkov, M. A.
    PHYSICAL MESOMECHANICS, 2014, 17 (02) : 97 - 115
  • [8] Negative Poisson’s ratio for cubic crystals and nano/microtubes
    R. V. Goldstein
    V. A. Gorodtsov
    D. S. Lisovenko
    M. A. Volkov
    Physical Mesomechanics, 2014, 17 : 97 - 115
  • [9] Symmetry analysis of extreme areal Poisson's ratio in anisotropic crystals
    Wheeler, Lewis
    Guo, Cliff Yi
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2007, 2 (08) : 1471 - 1499
  • [10] Poisson's ratio in cubic materials
    Norris, Andrew N.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2075): : 3385 - 3405