Using Multi-level Segmentation Features for Document Image Classification

被引:0
|
作者
Kaddas, Panagiotis [1 ,2 ]
Gatos, Basilis [1 ]
机构
[1] Natl Ctr Sci Res Demokritos, Computat Intelligence Lab, Inst Informat & Telecommun, Athens 15310, Greece
[2] Univ Athens, Dept Informat & Telecommun, Athens 15784, Greece
来源
关键词
Document image classification; Document image segmentation; Convolutional Neural Network; Deep Learning;
D O I
10.1007/978-3-031-06555-2_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Document Image classification is a crucial step in the processing pipeline for many purposes (e.g. indexing, OCR, keyword spotting) and is being applied at early stages. At this point, textual information about the document (OCR) is usually not available and additional features are required in order to achieve higher recognition accuracy. On the other hand, one may have reliable segmentation information (e.g. text block, paragraph, line, word, symbol segmentation results), extracted also at pre-processing stages. In this paper, visual features are fused with segmentation analysis results in a novel integrated workflow and end-to-end training can be easily applied. Significant improvements on popular datasets (Tobacco-3482 and RVL-CDIP) are presented, when compared to state-of-the-art methodologies which consider visual features.
引用
收藏
页码:702 / 712
页数:11
相关论文
共 50 条
  • [31] Particle swarm optimization-based liver disorder ultrasound image classification using multi-level and multi-domain features
    Krishnamurthy, Raghesh Krishnan
    Radhakrishnan, Sudhakar
    Kattuva, Mohaideen Abdul Kadhar
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (03) : 1366 - 1385
  • [32] Multi-level image segmentation and object representation for content based image retrieval
    Duygulu, P
    Yarman-Vural, F
    [J]. STORAGE AND RETRIEVAL FOR MEDIA DATABASES 2001, 2001, 4315 : 460 - 469
  • [33] Color image segmentation using multi-objective swarm optimizer and multi-level histogram thresholding
    Mohammad Reza Naderi Boldaji
    Samaneh Hosseini Semnani
    [J]. Multimedia Tools and Applications, 2022, 81 : 30647 - 30661
  • [34] Color image segmentation using multi-objective swarm optimizer and multi-level histogram thresholding
    Naderi Boldaji, Mohammad Reza
    Hosseini Semnani, Samaneh
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) : 30647 - 30661
  • [35] A Text Classification Model via Multi-Level Semantic Features
    Mao, Keji
    Xu, Jinyu
    Yao, Xingda
    Qiu, Jiefan
    Chi, Kaikai
    Dai, Guanglin
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [36] Multi-Class Document Image Classification using Deep Visual and Textual Features
    Sevim, Semih
    Ekinci, Ekin
    Omurca, Sevinc Ilhan
    Edinc, Eren Berk
    Eken, Suleyman
    Erdem, Turkucan
    Sayar, Ahmet
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2022, 21 (02)
  • [37] MRCNet: Multi-Level Residual Connectivity Network for Image Classification
    Ye, Mengting
    Chen, Zhenxue
    Guo, Yixin
    Yu, Kaili
    Liu, Longcheng
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [38] Early Fusion of Multi-level Saliency Descriptors for Image Classification
    Fidalgo, E.
    Alegre, E.
    Fernandez-Robles, L.
    Gonzalez-Castro, V
    [J]. REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2019, 16 (03): : 358 - 368
  • [39] Learning Multi-level Deep Representations for Image Emotion Classification
    Tianrong Rao
    Xiaoxu Li
    Min Xu
    [J]. Neural Processing Letters, 2020, 51 : 2043 - 2061
  • [40] Multi-Level Feature Extraction Networks for Hyperspectral Image Classification
    Fang, Shaoyi
    Li, Xinyu
    Tian, Shimao
    Chen, Weihao
    Zhang, Erlei
    [J]. REMOTE SENSING, 2024, 16 (03)