On the complexity of the hidden subgroup problem

被引:0
|
作者
Fenner, Stephen [1 ]
Zhang, Yong [2 ]
机构
[1] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
[2] Eastern Mennonite Univ, Dept Math Sci, Harrisonburg 22802, VA USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that several problems that figure prominently in quantum computing, including HIDDEN COSET, HIDDEN SHIFT, and ORBIT COSET, are equivalent or reducible to HIDDEN SUBGROUP. We also show that, over permutation groups, the decision version and search version of HIDDEN SUBGROUP are polynomial-time equivalent. For HIDDEN SUBGROUP over dihedral groups, such an equivalence can be obtained if the order of the group is smooth. Finally, we give nonadaptive program checkers for HIDDEN SUBGROUP and its decision version.
引用
下载
收藏
页码:70 / +
页数:3
相关论文
共 50 条
  • [31] The consensus string problem and the complexity of comparing hidden Markov models
    Lyngso, RB
    Pedersen, CNS
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 65 (03) : 545 - 569
  • [32] An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Nil-2 Groups
    Gábor Ivanyos
    Luc Sanselme
    Miklos Santha
    Algorithmica, 2012, 62 : 480 - 498
  • [33] Random Measurement Bases, Quantum State Distinction and Applications to the Hidden Subgroup Problem
    Jaikumar Radhakrishnan
    Martin Rötteler
    Pranab Sen
    Algorithmica, 2009, 55 : 490 - 516
  • [34] Random Measurement Bases, Quantum State Distinction and Applications to the Hidden Subgroup Problem
    Radhakrishnan, Jaikumar
    Roetteler, Martin
    Sen, Pranab
    ALGORITHMICA, 2009, 55 (03) : 490 - 516
  • [35] The Hidden Subgroup Problem and Post-quantum Group-Based Cryptography
    Horan, Kelsey
    Kahrobaei, Delaram
    MATHEMATICAL SOFTWARE - ICMS 2018, 2018, 10931 : 218 - 226
  • [36] An efficient quantum algorithm for the hidden subgroup problem in nil-2 groups
    Ivanyos, Gabor
    Sanselme, Luc
    Santha, Miklos
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 759 - +
  • [37] On the power of random bases in Fourier sampling:: Hidden subgroup problem in the Heisenberg group
    Radhakrishnan, J
    Rötteler, M
    Sen, P
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2005, 3580 : 1399 - 1411
  • [38] Solving a hidden subgroup problem using the adiabatic quantum-computing paradigm
    Rao, MVP
    PHYSICAL REVIEW A, 2003, 67 (05)
  • [39] Quantum solution to the hidden subgroup problem for poly-near-Hamiltonian groups
    Gavinsky, D
    QUANTUM INFORMATION & COMPUTATION, 2004, 4 (03) : 229 - 235
  • [40] Random measurement bases, quantum state distinction and applications to the hidden subgroup problem
    Sen, Pranab
    CCC 2006: TWENTY-FIRST ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2006, : 274 - 287