FINITE-TIME LYAPUNOV STABILITY ANALYSIS OF EVOLUTION VARIATIONAL INEQUALITIES

被引:5
|
作者
Addi, Khalid [1 ]
Adly, Samir [2 ]
Saoud, Hassan [2 ]
机构
[1] Univ La Reunion, PIMENT EA 4518, F-97400 St Denis, France
[2] Univ Limoges, XLIM UMR CNRS 6172, F-87060 Limoges, France
关键词
Finite-Time stability; Lyapunov stability; LaSalle invariance principle; nonsmooth analysis; variational inequality; complementarity problem; differential inclusions; convex analysis; NONSMOOTH DYNAMICAL-SYSTEMS; INVARIANCE-PRINCIPLE;
D O I
10.3934/dcds.2011.31.1023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Lyapunov's stability and LaSalle's invariance principle for nonsmooth dynamical systems, we establish some conditions for finite-time stability of evolution variational inequalities. The theoretical results are illustrated by some examples drawn from electrical circuits involving nonsmooth elements like diodes.
引用
收藏
页码:1023 / 1038
页数:16
相关论文
共 50 条
  • [21] Robust finite-time stability design via linear matrix inequalities
    Dorato, P
    Abdallah, CT
    Famularo, D
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1305 - 1306
  • [22] Annular Stochastic Finite-Time Stability Using Piecewise Quadratic Lyapunov Functions
    Tartaglione, G.
    Ambrosino, R.
    Ariola, M.
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 277 - 282
  • [23] A unified approach to finite-time hyperbolicity which extends finite-time Lyapunov exponents
    Doan, T. S.
    Karrasch, D.
    Nguyen, T. Y.
    Siegmund, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5535 - 5554
  • [24] Finite-time stability of linear systems: an approach based on polyhedral Lyapunov functions
    Amato, Francesco
    Ambrosino, Roberto
    Ariola, Marco
    Calabrese, Francesco
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5255 - +
  • [25] Finite-time stability of linear systems: an approach based on polyhedral Lyapunov functions
    Amato, F.
    Ambrosino, R.
    Ariola, M.
    Calabrese, F.
    IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (09): : 1767 - 1774
  • [26] Finite-Time Stability Analysis: A Tutorial Survey
    Xu, Honglei
    COMPLEXITY, 2020, 2020
  • [27] Finite-Time Stability via Polynomial Lyapunov Function of Nonlinear Quadratic Systems
    Bhiri, B.
    Delattre, C.
    Zasadzinski, M.
    Abderrahim, K.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 1142 - 1147
  • [28] Characteristic distributions of finite-time Lyapunov exponents
    Prasad, A
    Ramaswamy, R
    PHYSICAL REVIEW E, 1999, 60 (03): : 2761 - 2766
  • [29] UNCERTAINTY IN FINITE-TIME LYAPUNOV EXPONENT COMPUTATIONS
    Balasuriya, Sanjeeva
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2020, 7 (02): : 313 - 337
  • [30] Nonlinear finite-time Lyapunov exponent and predictability
    Ding, Ruiqiang
    Li, Jianping
    PHYSICS LETTERS A, 2007, 364 (05) : 396 - 400