FINITE-TIME LYAPUNOV STABILITY ANALYSIS OF EVOLUTION VARIATIONAL INEQUALITIES

被引:5
|
作者
Addi, Khalid [1 ]
Adly, Samir [2 ]
Saoud, Hassan [2 ]
机构
[1] Univ La Reunion, PIMENT EA 4518, F-97400 St Denis, France
[2] Univ Limoges, XLIM UMR CNRS 6172, F-87060 Limoges, France
关键词
Finite-Time stability; Lyapunov stability; LaSalle invariance principle; nonsmooth analysis; variational inequality; complementarity problem; differential inclusions; convex analysis; NONSMOOTH DYNAMICAL-SYSTEMS; INVARIANCE-PRINCIPLE;
D O I
10.3934/dcds.2011.31.1023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Lyapunov's stability and LaSalle's invariance principle for nonsmooth dynamical systems, we establish some conditions for finite-time stability of evolution variational inequalities. The theoretical results are illustrated by some examples drawn from electrical circuits involving nonsmooth elements like diodes.
引用
收藏
页码:1023 / 1038
页数:16
相关论文
共 50 条
  • [1] Finite-Time Partial Stability Theory and Fractional Lyapunov Differential Inequalities
    Haddad, Wassim M.
    L'Afflitto, Andrea
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5347 - 5352
  • [2] Finite-time input-to-state stability and related Lyapunov analysis
    Hong Yiguang
    Jiang Zhongping
    Feng Gang
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 6, 2007, : 652 - +
  • [3] FINITE-TIME LYAPUNOV STABILITY ANALYSIS AND ITS APPLICATION TO ATMOSPHERIC PREDICTABILITY
    YODEN, S
    NOMURA, M
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1993, 50 (11) : 1531 - 1543
  • [4] A Converse Lyapunov Theorem for Stochastic Finite-time Stability
    Liu Haijun
    Mu Xiaowu
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1419 - 1423
  • [5] A simple proof of the Lyapunov finite-time stability theorem
    Makarenkov, Oleg
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (03) : 277 - 281
  • [6] A Neural Network with Finite-Time Convergence for a Class of Variational Inequalities
    Gao, Xing-Bao
    Du, Li-Li
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 32 - 41
  • [7] Determining functionals for bifurcations on a finite-time interval in variational inequalities
    Kantz, H
    Reitmann, V
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 1098 - 1100
  • [8] Visual Analysis of the Finite-Time Lyapunov Exponent
    Sagrista, Antoni
    Jordan, Stefan
    Sadlo, Filip
    COMPUTER GRAPHICS FORUM, 2020, 39 (03) : 331 - 342
  • [9] Stability and bifurcations on a finite time interval in variational inequalities
    D. Yu. Kalinichenko
    V. Reitmann
    S. N. Skopinov
    Differential Equations, 2012, 48 : 1721 - 1732
  • [10] Stability and bifurcations on a finite time interval in variational inequalities
    Kalinichenko, D. Yu.
    Reitmann, V.
    Skopinov, S. N.
    DIFFERENTIAL EQUATIONS, 2012, 48 (13) : 1721 - 1732