A dynamic ensemble learning algorithm for neural networks

被引:375
|
作者
Alam, Kazi Md Rokibul [1 ]
Siddique, Nazmul [2 ]
Adeli, Hojjat [3 ,4 ,5 ]
机构
[1] Khulna Univ Engn & Technol, Dept Comp Sci & Engn, Khulna 9203, Bangladesh
[2] Ulster Univ, Sch Comp Engn & Intelligent Syst, Derry BT48 7JL, Londonderry, North Ireland
[3] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Neurol, Columbus, OH 43210 USA
[5] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 12期
关键词
Neural network ensemble; Backpropagation algorithm; Negative correlation learning; Constructive algorithms; Pruning algorithms; SELECTION; DIVERSITY; CLASSIFICATION; CLASSIFIERS; COMBINATION; DESIGN;
D O I
10.1007/s00521-019-04359-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel dynamic ensemble learning (DEL) algorithm for designing ensemble of neural networks (NNs). DEL algorithm determines the size of ensemble, the number of individual NNs employing a constructive strategy, the number of hidden nodes of individual NNs employing a constructive-pruning strategy, and different training samples for individual NN's learning. For diversity, negative correlation learning has been introduced and also variation of training samples has been made for individual NNs that provide better learning from the whole training samples. The major benefits of the proposed DEL compared to existing ensemble algorithms are (1) automatic design of ensemble; (2) maintaining accuracy and diversity of NNs at the same time; and (3) minimum number of parameters to be defined by user. DEL algorithm is applied to a set of real-world classification problems such as the cancer, diabetes, heart disease, thyroid, credit card, glass, gene, horse, letter recognition, mushroom, and soybean datasets. It has been confirmed by experimental results that DEL produces dynamic NN ensembles of appropriate architecture and diversity that demonstrate good generalization ability.
引用
收藏
页码:8675 / 8690
页数:16
相关论文
共 50 条
  • [21] Parallel Approach for Ensemble Learning with Locally Coupled Neural Networks
    Carlos Valle
    Francisco Saravia
    Héctor Allende
    Raúl Monge
    César Fernández
    Neural Processing Letters, 2010, 32 : 277 - 291
  • [22] Deep Neural Networks Guided Ensemble Learning for Point Estimation
    Zhan, Tianyu
    Fu, Haoda
    Kang, Jian
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2024, 16 (02): : 270 - 278
  • [23] Ensemble feature learning for material recognition with convolutional neural networks
    Peng Bian
    Wanwan Li
    Yi Jin
    Ruicong Zhi
    EURASIP Journal on Image and Video Processing, 2018
  • [24] Swarm Intelligence Based Ensemble Learning of Deep Neural Networks
    Li, Tao
    Ma, Jinwen
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 : 256 - 264
  • [25] Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP
    Shim, Yoonsik
    Philippides, Andrew
    Staras, Kevin
    Husbands, Phil
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (10)
  • [26] ENSEMBLE COMPETITIVE LEARNING NEURAL NETWORKS WITH REDUCED INPUT DIMENSION
    KIM, J
    AHN, J
    CHO, S
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1995, 6 (02) : 133 - 142
  • [27] Ensemble feature learning for material recognition with convolutional neural networks
    Bian, Peng
    Li, Wanwan
    Jin, Yi
    Zhi, Ruicong
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,
  • [28] Ensemble Learning on Deep Neural Networks for Image Caption Generation
    Katpally, Harshitha
    Bansal, Ajay
    2020 IEEE 14TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2020), 2020, : 61 - 68
  • [29] Analysis of sampling methods in the learning process of ensemble neural networks
    Lopez, Miguel
    Melin, Patricia
    NAFIPS 2007 - 2007 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, 2007, : 604 - +
  • [30] Ensemble Deep TimeNet : An Ensemble Learning Approach with Deep Neural Networks for Time Series
    Pathak, Sudipta
    Cai, Xingyu
    Rajasekaran, Sanguthevar
    2018 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2018,