An experimental and numerical study of the atmospheric stability impact on wind turbine wakes

被引:58
|
作者
Machefaux, Ewan [1 ]
Larsen, Gunner C. [1 ]
Koblitz, Tilman [1 ,3 ]
Troldborg, Niels [1 ]
Kelly, Mark C. [1 ]
Chougule, Abhijit [1 ]
Hansen, Kurt Schaldemose [1 ]
Rodrigo, Javier Sanz [2 ]
机构
[1] Tech Univ Denmark, Dept Wind Energy, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
[2] Ctr Nacl Energias Renovables CENER, Sarriguren 31621, Spain
[3] Vattenfall Energy Trading, Amsterdam, Netherlands
关键词
atmospheric stability; wake meandering; large eddy simulation; turbulence; lidar; TURBULENCE; PROFILES; SCALE; FARM; FLOW;
D O I
10.1002/we.1950
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, the impact of atmospheric stability on a wind turbine wake is studied experimentally and numerically. The experimental approach is based on full-scale (nacelle based) pulsed lidar measurements of the wake flow field of a stall-regulated 500 kW turbine at the DTU Wind Energy, Riso campus test site. Wake measurements are averaged within a mean wind speed bin of 1 m s(-1) and classified according to atmospheric stability using three different metrics: the Obukhov length, the Bulk-Richardson number and the Froude number. Three test cases are subsequently defined covering various atmospheric conditions. Simulations are carried out using large eddy simulation and actuator disk rotor modeling. The turbulence properties of the incoming wind are adapted to the thermal stratification using a newly developed spectral tensor model that includes buoyancy effects. Discrepancies are discussed, as basis for future model development and improvement. Finally, the impact of atmospheric stability on large-scale and small-scale wake flow characteristics is presently investigated. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:1785 / 1805
页数:21
相关论文
共 50 条
  • [21] Impact of atmospheric stability on wind turbine wake evolution
    Subramanian, B.
    Chokani, N.
    Abhari, R. S.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2018, 176 : 174 - 182
  • [22] UNDERSTANDING THE INFLUENCE OF TURBINE GEOMETRY AND ATMOSPHERIC TURBULENCE ON WIND TURBINE WAKES
    Gu, Ping
    Kuo, Jim Y. J.
    Romero, David A.
    Amon, Cristina H.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 6B, 2017,
  • [23] The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms
    Doerenkaemper, Martin
    Witha, Bjoern
    Steinfeld, Gerald
    Heinemann, Detlev
    Kuehn, Martin
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2015, 144 : 146 - 153
  • [24] Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study
    Englberger, Antonia
    Doernbrack, Andreas
    BOUNDARY-LAYER METEOROLOGY, 2017, 162 (03) : 427 - 449
  • [25] Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study
    Antonia Englberger
    Andreas Dörnbrack
    Boundary-Layer Meteorology, 2017, 162 : 427 - 449
  • [26] An experimental and analytical study of wind turbine wakes under pressure gradient
    Dar, Arslan Salim
    Gertler, Abraham Starbuck
    Porte-Agel, Fernando
    PHYSICS OF FLUIDS, 2023, 35 (04)
  • [27] Assessment of Wind over Complex Terrain Considering the Effects of Topography, Atmospheric Stability and Turbine Wakes
    Yamaguchi, Atsushi
    Tavana, Alireza
    Ishihara, Takeshi
    ATMOSPHERE, 2024, 15 (06)
  • [28] Volumetric Lidar Scanning of Wind Turbine Wakes under Convective and Neutral Atmospheric Stability Regimes
    Iungo, Giacomo Valerio
    Porte-Agel, Fernando
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2014, 31 (10) : 2035 - 2048
  • [29] Instability of wind turbine wakes immersed in the atmospheric boundary layer
    Viola, Francesco
    Iungo, Giacomo Valerio
    Camarri, Simone
    Porte-Agel, Fernando
    Gallaire, Francois
    WAKE CONFERENCE 2015, 2015, 625
  • [30] Interaction of Wind Turbine Wakes under Various Atmospheric Conditions
    Lee, Sang
    Vorobieff, Peter
    Poroseva, Svetlana
    ENERGIES, 2018, 11 (06)