Generalized handlebody sets and non-Haken 3-manifolds

被引:1
|
作者
Johnson, Jesse Edward [1 ]
Patel, Terk [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
curve complex; non-Haken; 3-manifold;
D O I
10.2140/pjm.2008.235.35
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the curve complex for a surface, a handlebody set is the set of loops that bound properly embedded disks in a given handlebody bounded by the surface. A boundary set is the set of nonseparating loops in the curve complex that bound two-sided, properly embedded surfaces. For a Heegaard splitting, the distance between the boundary sets of the handlebodies is zero if and only if the ambient manifold contains a nonseparating, two sided incompressible surface. We show that every vertex in the curve complex is within two edges of a point in the boundary set.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 50 条
  • [31] THE WEBER-SEIFERT DODECAHEDRAL SPACE IS NON-HAKEN
    Burton, Benjamin A.
    Rubinstein, J. Hyam
    Tillmann, Stephan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (02) : 911 - 932
  • [32] Euler characteristics of generalized Haken manifolds
    Davis, Michael W.
    Edmonds, Allan L.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (06): : 3701 - 3716
  • [33] Geometric topology of generalized 3-manifolds
    Cavicchioli A.
    Repovš D.
    Thickstun T.L.
    Journal of Mathematical Sciences, 2007, 144 (5) : 4413 - 4422
  • [34] Generalized Kuperberg invariants of 3-manifolds
    Kashaev, Rinat
    Virelizier, Alexis
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (05): : 2575 - 2624
  • [35] GENERALIZED TORSION AND DECOMPOSITION OF 3-MANIFOLDS
    Ito, Tetsuya
    Motegi, Kimihiko
    Teragaito, Masakazu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (11) : 4999 - 5008
  • [36] ISOLATED SINGULARITIES IN GENERALIZED 3-MANIFOLDS
    REPOVS, D
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1986, 39 (10): : 13 - 15
  • [37] On Cantor sets in 3-manifolds and branched coverings
    Montesinos-Amilibia, JM
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 209 - 212
  • [38] Finiteness of mapping degree sets for 3-manifolds
    Derbez, Pierre
    Sun, Hong Bin
    Wang, Shi Cheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (05) : 807 - 812
  • [39] Limit sets of foliations in hyperbolic 3-manifolds
    Fenley, SR
    TOPOLOGY, 1998, 37 (04) : 875 - 894
  • [40] Finiteness of mapping degree sets for 3-manifolds
    Pierre Derbez
    Hong Bin Sun
    Shi Cheng Wang
    Acta Mathematica Sinica, English Series, 2011, 27