Genome Editing of Veterinary Relevant Mycoplasmas Using a CRISPR-Cas Base Editor System

被引:10
|
作者
Ipoutcha, Thomas [1 ]
Rideau, Fabien [1 ]
Gourgues, Geraldine [1 ]
Arfi, Yonathan [1 ]
Lartigue, Carole [1 ]
Blanchard, Alain [1 ]
Sirand-Pugnet, Pascal [1 ]
机构
[1] Univ Bordeaux, UMR BFP, INRAE, Villenave Dornon, France
关键词
CRISPR-Cas9; mycoplasma; animal pathogens; minimal cell; genome editing; TARGETED HOMOLOGOUS RECOMBINATION; SPIROPLASMA-CITRI; TRANSPOSON MUTAGENESIS; GENE DISRUPTION; ORIC PLASMIDS; GALLISEPTICUM; DNA; PATHOGENICITY; IDENTIFICATION; CYTADHERENCE;
D O I
10.1128/aem.00996-22
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Mycoplasmas are minimal pathogenic bacteria that infect a wide range of hosts, including humans, livestock, and wild animals. Major pathogenic species cause acute to chronic infections involving still poorly characterized virulence factors. Mycoplasmas are minimal bacteria that infect humans, wildlife, and most economically relevant livestock species. Mycoplasma infections cause a large range of chronic inflammatory diseases, eventually leading to death in some animals. Due to the lack of efficient recombination and genome engineering tools for most species, the production of mutant strains for the identification of virulence factors and the development of improved vaccine strains is limited. Here, we demonstrate the adaptation of an efficient Cas9-Base Editor system to introduce targeted mutations into three major pathogenic species that span the phylogenetic diversity of these bacteria: the avian pathogen Mycoplasma gallisepticum and the two most important bovine mycoplasmas, Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides. As a proof of concept, we successfully used an inducible SpdCas9-pmcDA1 cytosine deaminase system to disrupt several major virulence factors in these pathogens. Various induction times and inducer concentrations were evaluated to optimize editing efficiency. The optimized system was powerful enough to disrupt 54 of 55 insertion sequence transposases in a single experiment. Whole-genome sequencing of the edited strains showed that off-target mutations were limited, suggesting that most variations detected in the edited genomes are Cas9-independent. This effective, rapid, and easy-to-use genetic tool opens a new avenue for the study of these important animal pathogens and likely the entire class Mollicutes. IMPORTANCE Mycoplasmas are minimal pathogenic bacteria that infect a wide range of hosts, including humans, livestock, and wild animals. Major pathogenic species cause acute to chronic infections involving still poorly characterized virulence factors. The lack of precise genome editing tools has hampered functional studies of many species, leaving multiple questions about the molecular basis of their pathogenicity unanswered. Here, we demonstrate the adaptation of a CRISPR-derived base editor for three major pathogenic species: Mycoplasma gallisepticum, Mycoplasma bovis, and Mycoplasma mycoides subsp. mycoides. Several virulence factors were successfully targeted, and we were able to edit up to 54 target sites in a single step. The availability of this efficient and easy-to-use genetic tool will greatly facilitate functional studies of these economically important bacteria.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] CRISPR-Cas for genome editing: Classification, mechanism, designing and applications
    Bhatia, Simran
    Pooja, Sudesh Kumar
    Yadav, Sudesh Kumar
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 238
  • [42] CRISPR-Cas Genome Editing in Ex Vivo Human Lungs
    Mesaki, K.
    Yamamoto, H.
    Juvet, S.
    Yeung, J.
    Guan, Z.
    Yao, Y.
    Chen, M.
    Gokhale, H.
    Shan, H.
    Wang, A.
    Wilson, G.
    Mariscal, A.
    Hu, J.
    Davidson, A.
    Kleinstiver, B.
    Cypel, M.
    Liu, M.
    Keshavjee, S.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2024, 43 (04): : S13 - S14
  • [43] CRISPR-Cas systems: ushering in the new genome editing era
    Rojo, Fernando Perez
    Nyman, Rikard Karl Martin
    Johnson, Alexander Arthur Theodore
    Navarro, Maria Pazos
    Ryan, Megan Helen
    Erskine, William
    Kaur, Parwinder
    BIOENGINEERED, 2018, 9 (01) : 214 - 221
  • [44] Exploiting CRISPR-Cas immune systems for genome editing in bacteria
    Barrangou, Rodolphe
    van Pijkeren, Jan-Peter
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 : 61 - 68
  • [45] Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing
    Balderston, Sarah
    Clouse, Gabrielle
    Ripoll, Juan-Jose
    Pratt, Grace K.
    Gasiunas, Giedrius
    Bock, Jens-Ole
    Bennett, Eric Paul
    Aran, Kiana
    CRISPR JOURNAL, 2021, 4 (03): : 400 - 415
  • [46] Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing
    Rabinowitz, Roy
    Offen, Daniel
    MOLECULAR THERAPY, 2021, 29 (03) : 937 - 948
  • [47] CRISPR-Cas genome editing system: A versatile tool for developing disease resistant crops
    Talakayala, Ashwini
    Ankanagari, Srinivas
    Garladinne, Mallikarjuna
    PLANT STRESS, 2022, 3
  • [48] Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects
    Li, Yingjun
    Peng, Nan
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [49] Editing plants for virus resistance using CRISPR-Cas
    Green, J. C.
    Hu, J. S.
    ACTA VIROLOGICA, 2017, 61 (02) : 138 - 142
  • [50] GENERATION OF IL1β-RESISTANT CHONDROCYTES USING CRISPR-CAS GENOME EDITING
    Karlsen, T. A.
    Pernas, P. F.
    Staerk, J.
    Caglayan, S.
    Brinchmann, J. E.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S325 - S325