Implications of Yang-Lee theory for densities in the critical region

被引:1
|
作者
Kromhout, RA [1 ]
机构
[1] Florida State Univ, Dept Phys, Chem Phys Program, Tallahassee, FL 32306 USA
来源
PHYSICA B | 2001年 / 301卷 / 3-4期
关键词
Yang-Lee theory; critical density;
D O I
10.1016/S0921-4526(01)00234-4
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
By fitting the density of zeros of the grand partition function, in the neighborhood of transition and critical points, to functional forms consistent with the qualitative behavior expected from the Yang-Lee theory of phase transitions, we show that the Yang-Lee theory implies (or is at least consistent with) scaling. We show that in scaling experimental data the reference density and chemical potentials should not be, in general, the critical values, but rather values associated with coexistence or with maxima in the isothermal compressibility. As an example we display data for water. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 50 条
  • [1] Yang-Lee zeros of the Yang-Lee model
    Mussardo, G.
    Bonsignori, R.
    Trombettoni, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (48)
  • [2] On Fatou sets concerning Yang-Lee theory
    QIAO Jianyong Center of Mathematics
    Science China Mathematics, 2005, (04) : 433 - 447
  • [3] Yang-Lee theory for a nonequilibrium phase transition
    Arndt, PF
    PHYSICAL REVIEW LETTERS, 2000, 84 (05) : 814 - 817
  • [4] On Fatou sets concerning Yang-Lee theory
    Jianyong Qiao
    Science in China Series A: Mathematics, 2005, 48 : 433 - 447
  • [5] On Fatou sets concerning Yang-Lee theory
    QIAO Jianyong Center of Mathematics China University of Mining and Technology Beijing China
    ScienceinChina,SerA., 2005, Ser.A.2005 (04) : 433 - 447
  • [6] On Fatou sets concerning Yang-Lee theory
    Qiao, JY
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (04): : 433 - 447
  • [7] Critical Relaxation in the Quantum Yang-Lee Edge Singularity
    Sun, Yue-Mei
    Wang, Xinyu
    Zhai, Liang-Jun
    ENTROPY, 2025, 27 (02)
  • [8] Tests of conformal field theory at the Yang-Lee singularity
    Wydro, Tomasz
    McCabe, John F.
    STATISTICAL PHYSICS: MODERN TRENDS AND APPLICATIONS, 2009, 1198 : 216 - +
  • [9] Density of Yang-Lee zeros and Yang-Lee edge singularity for the antiferromagnetic Ising model
    Kim, SY
    NUCLEAR PHYSICS B, 2005, 705 (03) : 504 - 520
  • [10] ON YANG-LEE DISTRIBUTION OF ROOTS
    HIISHAUG.E
    HEMMER, PC
    PHYSICA, 1963, 29 (12): : 1338 - &