A protocol for studying structural dynamics of proteins by quantitative crosslinking mass spectrometry and data-independent acquisition

被引:9
|
作者
Mueller, Fraenze [1 ]
Rappsilber, Juri [1 ,2 ]
机构
[1] Tech Univ Berlin, Inst Biotechnol, Bioanalyt, D-13355 Berlin, Germany
[2] Univ Edinburgh, Wellcome Ctr Cell Biol, Sch Biol Sci, Edinburgh EH9 3BF, Midlothian, Scotland
基金
英国惠康基金;
关键词
PEPTIDE IDENTIFICATION; CONFORMATIONAL-CHANGES; PROCESSING STRATEGIES; PROTEOMICS; REPRODUCIBILITY; SELECTIVITY; TECHNOLOGY; COMPLEMENT; PROTEASOME; PARAMETERS;
D O I
10.1016/j.jprot.2020.103721
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Quantitative crosslinking mass spectrometry (QCLMS) reveals structural details of protein conformations in solution. QCLMS can benefit from data-independent acquisition (DIA), which maximises accuracy, reproducibility and throughput of the approach. This DIA-QCLMS protocol comprises of three main sections: sample preparation, spectral library generation and quantitation. The DIA-QCLMS workflow supports isotope-labelling as well as label-free quantitation strategies, uses xiSEARCH for crosslink identification, and xiDIA-Library to create a spectral library for a peptide-centric quantitative approach. We integrated Spectronaut, a leading quantitation software, to analyse DIA data. Spectronaut supports DIA-QCLMS data to quantify crosslinks. It can be used to reveal the structural dynamics of proteins and protein complexes, even against a complex background. In combination with photoactivatable crosslinkers (photo-DIA-QCLMS), the workflow can increase data density and better capture protein dynamics due to short reaction times. Additionally, this can reveal conformational changes caused by environmental influences that would otherwise affect crosslinking itself, such as changing pH conditions. Significance: This protocol is an detailed step-by-step description on how to implement our previously published DIA-QCLMS workflow (Muller et al. Mol Cell Proteomics. 2019 Apr;18(4):786-795). It includes sample preparation for QCLMS, Optimization of DIA strategies, implementation of the Spectronaut software and required python scripts and guideline on how to analyse quantitative crosslinking data. The DIA-QCLMS workflow widen the scope for a range of new crosslinking applications and this step-by-step protocol enhances the accessibility to a broad scientific user base.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics
    Peckner, Ryan
    Myers, Samuel A.
    Jacome, Alvaro Sebastian Vaca
    Egertson, Jarrett D.
    Abelin, Jennifer G.
    MacCoss, Michael J.
    Carr, Steven A.
    Jaffe, Jacob D.
    NATURE METHODS, 2018, 15 (05) : 371 - +
  • [42] MassDash: A Web-Based Dashboard for Data-Independent Acquisition Mass Spectrometry Visualization
    Sing, Justin C.
    Charkow, Joshua
    Alhigaylan, Mohammed
    Horecka, Ira
    Xu, Leon
    Ro''st, Hannes L.
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (06) : 2306 - 2314
  • [43] Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics
    Ryan Peckner
    Samuel A Myers
    Alvaro Sebastian Vaca Jacome
    Jarrett D Egertson
    Jennifer G Abelin
    Michael J MacCoss
    Steven A Carr
    Jacob D Jaffe
    Nature Methods, 2018, 15 : 371 - 378
  • [44] Discovery of Candidate Stool Biomarker Proteins for Biliary Atresia Using Proteome Analysis by Data-Independent Acquisition Mass Spectrometry
    Watanabe, Eiichiro
    Kawashima, Yusuke
    Suda, Wataru
    Kakihara, Tomo
    Takazawa, Shinya
    Nakajima, Daisuke
    Nakamura, Ren
    Nishi, Akira
    Suzuki, Kan
    Ohara, Osamu
    Fujishiro, Jun
    PROTEOMES, 2020, 8 (04) : 1 - 12
  • [45] Evaluating the Performance of the Astral Mass Analyzer for Quantitative Proteomics Using Data-Independent Acquisition
    Heil, Lilian R.
    Damoc, Eugen
    Arrey, Tabiwang N.
    Pashkova, Anna
    Denisov, Eduard
    Petzoldt, Johannes
    Peterson, Amelia C.
    Hsu, Chris
    Searle, Brian C.
    Shulman, Nicholas
    Riffle, Michael
    Connolly, Brian
    Maclean, Brendan X.
    Remes, Philip M.
    Senko, Michael W.
    Stewart, Hamish I.
    Hock, Christian
    Makarov, Alexander A.
    Hermanson, Daniel
    Zabrouskov, Vlad
    Wu, Christine C.
    Maccoss, Michael J.
    JOURNAL OF PROTEOME RESEARCH, 2023, 22 (10) : 3290 - 3300
  • [46] Building Spectral Libraries from Narrow-Window Data-Independent Acquisition Mass Spectrometry Data
    Heil, Lilian R.
    Fondrie, William E.
    McGann, Christopher D.
    Federation, Alexander J.
    Noble, William S.
    MacCoss, Michael J.
    Keich, Uri
    JOURNAL OF PROTEOME RESEARCH, 2022, 21 (06) : 1382 - 1391
  • [47] Automating data analysis for hydrogen/deuterium exchange mass spectrometry using data-independent acquisition methodology
    Frantisek Filandr
    Vladimir Sarpe
    Shaunak Raval
    D. Alex Crowder
    Morgan F. Khan
    Pauline Douglas
    Stephen Coales
    Rosa Viner
    Aleem Syed
    John A. Tainer
    Susan P. Lees-Miller
    David C. Schriemer
    Nature Communications, 15
  • [48] A Cosine-Similarity-Based Deconvolution Method for Analyzing Data-Independent Acquisition Mass Spectrometry Data
    Zhang, Xiang
    Wu, Ruitao
    Qu, Zhijian
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [49] Automating data analysis for hydrogen/deuterium exchange mass spectrometry using data-independent acquisition methodology
    Filandr, Frantisek
    Sarpe, Vladimir
    Raval, Shaunak
    Crowder, D. Alex
    Khan, Morgan F.
    Douglas, Pauline
    Coales, Stephen
    Viner, Rosa
    Syed, Aleem
    Tainer, John A.
    Lees-Miller, Susan P.
    Schriemer, David C.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [50] PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data
    Ting, Ying S.
    Egertson, Jarrett D.
    Bollinger, James G.
    Searle, Brian C.
    Payne, Samuel H.
    Noble, William Stafford
    MacCoss, Michael J.
    NATURE METHODS, 2017, 14 (09) : 903 - +