New estimation methods of count-min sketch

被引:2
|
作者
Li, HS [1 ]
Huang, HK [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Compute Sci & Sci, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
关键词
D O I
10.1109/RIDE.2005.12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Count-Min sketch is an efficient approximate query tool for data stream. In this paper we address how to further improve its point query performance. Firstly, we modify the estimation method under cash register model. Our method will relieve error propagation. Secondly, we find better method under turnstile model and prove that our method is more efficient than that Count-Min sketch. These conclusions are well supported by experimental results.
引用
下载
收藏
页码:73 / 80
页数:8
相关论文
共 50 条
  • [21] Reducing data stream complexity by applying Count-Min algorithm and discretization procedure
    Sisovic, Sabina
    Bakaric, Marija Brkic
    Matetic, Maja
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2018), 2018, : 221 - 228
  • [22] Learning-augmented count-min sketches via Bayesian nonparametrics
    Dolera, Emanuele
    Favaro, Stefano
    Peluchetti, Stefano
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 24
  • [23] 面向数据流的多层Count-Min概要数据结构
    冯文峰
    郭巧
    关志涛
    张治斌
    计算机工程, 2007, (14) : 20 - 23
  • [24] Share a pie? Privacy-Preserving Knowledge Base Export through Count-min Sketches
    Ucci, Daniele
    Aniello, Leonardo
    Baldoni, Roberto
    PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 95 - 106
  • [25] Optimizing the confidence bound of count-min sketches to estimate the streaming big data query results more precisely
    Ruixin Guo
    Erkang Xue
    Feng Zhang
    Gansen Zhao
    Guangzhi Qu
    Computing, 2020, 102 : 1419 - 1445
  • [26] Optimizing the confidence bound of count-min sketches to estimate the streaming big data query results more precisely
    Guo, Ruixin
    Xue, Erkang
    Zhang, Feng
    Zhao, Gansen
    Qu, Guangzhi
    COMPUTING, 2020, 102 (06) : 1419 - 1445
  • [27] Reliability Evaluation of the Count Min Sketch ( CMS) against Single Event Transients (SETs)
    Zhu, Jinhua
    Gao, Zhen
    Jin, Jie
    Reviriego, Pedro
    2021 IEEE 39TH VLSI TEST SYMPOSIUM (VTS), 2021,
  • [28] CoMeT: Count-Min-Sketch-based Row Tracking to Mitigate RowHammer at Low Cost
    Bostanci, F. Nisa
    Yuksel, Ismail Emir
    Olgun, Ataberk
    Kanellopoulos, Konstantinos
    Tugrul, Yahya Can
    Yaglikci, A. Giray
    Sadrosadati, Mohammad
    Mutlu, Onur
    2024 IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE, HPCA 2024, 2024, : 593 - 612
  • [29] Unbiased estimation of inner product via higher order count sketch
    Verma, Bhisham Dev
    Pratap, Rameshwar
    Thakur, Manoj
    INFORMATION PROCESSING LETTERS, 2024, 183
  • [30] Sparsifying Count Sketch
    Verma, Bhisham Dev
    Pratap, Rameshwar
    Dubey, Punit Pankaj
    INFORMATION PROCESSING LETTERS, 2024, 186