A Vibro-Acoustic Hybrid Implantable Microphone for Middle Ear Hearing Aids and Cochlear Implants

被引:4
|
作者
Seong, Ki Woong [1 ]
Mun, Ha Jun [2 ]
Shin, Dong Ho [3 ]
Kim, Jong Hoon [4 ]
Nakajima, Hideko Heidi [5 ]
Puria, Sunil [5 ]
Cho, Jin-Ho [3 ]
机构
[1] Kyungpook Natl Univ Hosp, Dept Biomed Engn, 130 Dongdeok Ro, Daegu 41944, South Korea
[2] Kyungpook Natl Univ, Grad Sch Elect Engn, 80 Daehak Ro, Daegu 702701, South Korea
[3] Kyungpook Natl Univ, Inst Biomed Engn Res, 680 Gukchaebosang Ro, Daegu 41944, South Korea
[4] Kyungpook Natl Univ, Grad Sch, Dept Med & Biol Engn, 680 Gukchaebosang Ro, Daegu 41944, South Korea
[5] Harvard Med Sch, Massachusetts Eye & Ear Infirm, Dept Otolaryngol Head & Neck Surg, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA
基金
新加坡国家研究基金会;
关键词
implantable microphone; hybrid vibro-acoustic sensor; electret condenser microphone; electret-type acceleration sensor; high sensitivity; wide frequency range; SENSOR;
D O I
10.3390/s19051117
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To develop totally implantable middle ear and cochlear implants, a miniature microphone that is surgically easy to implant and has a high sensitivity in a sufficient range of audio frequencies is needed. Of the various implantable acoustic sensors under development, only micro electro-mechanical system-type acoustic sensors, which attach to the umbo of the tympanic membrane, meet these requirements. We describe a new vibro-acoustic hybrid implantable microphone (VAHIM) that combines acceleration and sound pressure sensors. Each sensor can collect the vibration of the umbo and sound pressure of the middle ear cavity. The fabricated sensor was implanted into a human temporal bone and the noise level and sensitivity were measured. From the experimental results, it is shown that the proposed method is able to provide a wider-frequency band than conventional implantable acoustic sensors.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Should children who use cochlear implants wear hearing aids in the opposite ear?
    Ching, TYC
    Psarros, C
    Hill, M
    Dillon, H
    Incerti, P
    EAR AND HEARING, 2001, 22 (05): : 365 - 380
  • [22] The Frequency Response of a Floating Piezoelectric Microphone for the Implantable Middle Ear Microphone
    Gao, Na
    Chen, Yong Zheng
    Chi, Fang Lu
    Zhang, Tian Yu
    Xu, Hai Dong
    Kang, Hou Yong
    Pan, Tie Zheng
    LARYNGOSCOPE, 2013, 123 (06): : 1506 - 1513
  • [23] Applied topology optimization of vibro-acoustic hearing instrument models
    Sondergaard, Morten Birkmose
    Pedersen, Claus B. W.
    JOURNAL OF SOUND AND VIBRATION, 2014, 333 (03) : 683 - 692
  • [24] DESIGN OF CAPACITIVE MEMS MICROPHONE FOR FULLY IMPLANTABLE COCHLEAR IMPLANTS
    Muthusamy, Somanaathan
    Soin, Norhayati
    2020 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE 2020), 2020, : 156 - 159
  • [25] Systematic Review of Middle Ear Implants: Do They Improve Hearing as Much as Conventional Hearing Aids?
    Tysome, James R.
    Moorthy, Ram
    Lee, Ambrose
    Jiang, Dan
    O'Connor, Alec Fitzgerald
    OTOLOGY & NEUROTOLOGY, 2010, 31 (09) : 1369 - 1375
  • [26] Feasibility test of implantable microphone at middle ear cavity
    Woo, S. H. A.
    Lee, J. W.
    Park, I-Y.
    Song, B. S.
    ELECTRONICS LETTERS, 2013, 49 (13) : 784 - 785
  • [27] Benefits of Bimodal Hearing With Cochlear and Middle Ear Implants: Preliminary Results in Four Patients
    Lee, Hyun Jin
    Kim, Sung Huhn
    Moon, In Seok
    Jung, Jinsei
    Lee, Jeon Mi
    Choi, Jae Young
    OTOLOGY & NEUROTOLOGY, 2018, 39 (06) : e422 - e428
  • [28] Cochlear implants, hearing aids, or both together?
    Blamey, P
    Armstrong, M
    James, C
    COCHLEAR IMPLANTS, 1996, : 273 - 277
  • [29] Concurrent use of cochlear implants and hearing aids
    Syms, CA
    Wickesberg, J
    COCHLEAR IMPLANTS - AN UPDATE, 2002, : 535 - 539
  • [30] Improvements in Gait With Hearing Aids and Cochlear Implants
    Shayman, Corey S.
    Earhart, Gammon M.
    Hullar, Timothy E.
    OTOLOGY & NEUROTOLOGY, 2017, 38 (04) : 484 - 486