Using a 3D convolutional neural network and gated recurrent unit for tropical cyclone track forecasting

被引:7
|
作者
Wang, Pingping [1 ,3 ]
Wang, Ping [1 ,3 ]
Wang, Cong [1 ,3 ]
Xue, Bing [2 ,3 ]
Wang, Di [1 ,3 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
[2] CMA Publ Meteorol Serv Ctr, Beijing, Peoples R China
[3] CMA Publ Meteorol Serv Ctr, Joint Lab Intelligent Identificat & Nowcasting Se, Beijing, Peoples R China
关键词
Tropical cyclone; 3DCNN; GRU; Track forecasting; Machine learning; HURRICANE; INTENSITY; MODEL; ENSEMBLE; SYSTEMS; SHEAR;
D O I
10.1016/j.atmosres.2022.106053
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The tropical cyclone (TC) track forecast is an essential task in meteorological operations. An accurate forecast should be based on a comprehensive understanding and description of TCs. A TC has a complex threedimensional structure, and the surrounding atmosphere is the driving force for its development. Traditional forecasting methods performed relatively well for the TCs with stable moving speed and direction. However, the forecast accuracy still leaves some space to improve. In recent years, machine learning methods that can extract features from a large amount of historical data have been used in meteorological services and have shown excellent performance. To better forecast 6, 12, 18, and 24 h TC tracks in the Western North Pacific, a hybrid optimization model, combining the 3D convolutional neural network (3DCNN), gated recurrent unit (GRU), and smoothing algorithm is designed, which is called smoothed 3D-GRU. The 3DCNN is used to explore the potential relationship between environmental variables and TC movements at different pressure levels. The GRU is used to convert the TC track forecasting problem into a spatio-temporal sequence problem. The smoothing algorithm is used as a post-processing method to suppress unreasonable jumps of the model output. The mean spherical distances (MSDs) of the proposed smoothed 3D-GRU model at four prediction times are 27.89, 52.37, 79.16, and 112.05 km, which are lower than the comparative machine learning-based forecasting algorithms. Compared with the numerical prediction methods, the MSDs of the smoothed 3D-GRU model are lower in most situations. In general, the smoothed 3D-GRU model can provide reliable guidance for the TC trajectory prediction.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [41] Character-level text classification via convolutional neural network and gated recurrent unit
    Bing Liu
    Yong Zhou
    Wei Sun
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 1939 - 1949
  • [42] Stock prediction based on bidirectional gated recurrent unit with convolutional neural network and feature selection
    Zhou, Qihang
    Zhou, Changjun
    Wang, Xiao
    PLOS ONE, 2022, 17 (02):
  • [43] A hierarchical deep convolutional neural network and gated recurrent unit framework for structural damage detection
    School of Information Science and Engineering, Chongqing Jiaotong University, China
    不详
    不详
    Inf Sci, 2020, (117-130): : 117 - 130
  • [44] Fault diagnosis of rolling bearing based on deep convolutional neural network and gated recurrent unit
    Zhou, Zhexin
    Wang, Hao
    LI, Zhuoxian
    Chen, Wei
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2023, 17 (02)
  • [45] Combination of Convolutional Neural Network and Gated Recurrent Unit for Aspect-Based Sentiment Analysis
    Zhao, Narisa
    Gao, Huan
    Wen, Xin
    Li, Hui
    IEEE ACCESS, 2021, 9 : 15561 - 15569
  • [46] A hierarchical deep convolutional neural network and gated recurrent unit framework for structural damage detection
    Yang, Jianxi
    Zhang, Likai
    Chen, Cen
    Li, Yangfan
    Li, Ren
    Wang, Guiping
    Jiang, Shixin
    Zeng, Zeng
    INFORMATION SCIENCES, 2020, 540 : 117 - 130
  • [47] Character-level text classification via convolutional neural network and gated recurrent unit
    Liu, Bing
    Zhou, Yong
    Sun, Wei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (08) : 1939 - 1949
  • [48] Inferring Drug-Related Diseases Based on Convolutional Neural Network and Gated Recurrent Unit
    Xuan, Ping
    Zhao, Lianfeng
    Zhang, Tiangang
    Ye, Yilin
    Zhang, Yan
    MOLECULES, 2019, 24 (15):
  • [49] ATTnet: An explainable gated recurrent unit neural network for high frequency electricity price forecasting
    Yang, Haolin
    Schell, Kristen R.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 158
  • [50] MwoA auxiliary diagnosis using 3D convolutional neural network
    Li, Xiang
    Wei, Benzheng
    Wu, Hongyun
    Li, Xuzhou
    Cong, Jinyu
    2020 11TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2020,