Classifying integrable Egoroff hydrodynamic chains

被引:33
|
作者
Pavlov, MV [1 ]
机构
[1] Loughborough Univ Technol, Loughborough LE11 3TU, Leics, England
关键词
hydrodynamic chains and lattices; Egoroff integrable systems; dispersionless Hirota equations; tau function; (2+1)-dimensional dispersionless equations; Chazy equation; theta function;
D O I
10.1023/B:TAMP.0000010632.20218.62
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the notion of Egoroff hydrodynamic chains. We show how they are related to integrable (2+1)-dimensional equations of hydrodynamic type. We classify these equations in the simplest case. We find (2+1)-dimensional equations that are not just generalizations of the already known Khokhlov-Zabolotskaya and Boyer-Finley equations but are much more involved. These equations are parameterized by theta functions and by solutions of the Chazy equations. We obtain analogues of the dispersionless Hirota equations.
引用
收藏
页码:45 / 58
页数:14
相关论文
共 50 条
  • [31] Integrable multiparametric quantum spin chains
    Foerster, A
    Links, J
    Roditi, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 687 - 695
  • [32] INTEGRABLE MODEL OF INTERACTING XY CHAINS
    BARIEV, RZ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16): : L919 - L923
  • [33] BOUNDARY-CONDITIONS FOR INTEGRABLE CHAINS
    HABIBULLIN, IT
    PHYSICS LETTERS A, 1995, 207 (05) : 263 - 268
  • [34] Lenard Chains for Classical Integrable Systems
    F. Magri
    Theoretical and Mathematical Physics, 2003, 137 : 1716 - 1722
  • [35] Classifying polygonal chains of six segments
    Clark, TJ
    Venema, GA
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (04) : 479 - 514
  • [36] Hydrodynamic nonlinear response of interacting integrable systems
    Fava, Michele
    Biswas, Sounak
    Gopalakrishnan, Sarang
    Vasseur, Romain
    Parameswaran, S. A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (37)
  • [37] Integrable hydrodynamic submodels with a linear velocity field
    Urazbakhtina L.Z.
    Journal of Applied and Industrial Mathematics, 2013, 7 (01) : 117 - 126
  • [38] Separable Hamiltonians and integrable systems of hydrodynamic type
    Ferapontov, EV
    Fordy, AP
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 21 (02) : 169 - 182
  • [39] A cohomological construction of integrable hierarchies of hydrodynamic type
    Lorenzoni, P
    Magri, F
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (34) : 2087 - 2100
  • [40] On the prolongation of a hierarchy of hydrodynamic chains
    Shabat, AB
    Alonso, LM
    NEW TRENDS IN INTEGRABILITY AND PARTIAL SOLVABILITY, 2004, 132 : 263 - 280