Breast Density Classification Using Multifractal Spectrum with Histogram Analysis

被引:2
|
作者
Li, Haipeng [1 ]
Mukundan, Ramakrishnan [1 ]
Boyd, Shelley [2 ]
机构
[1] Univ Canterbury, Dept Comp Sci & Software Engn, Christchurch, New Zealand
[2] St Georges Med Ctr, Canterbury Breastcare, Christchurch, New Zealand
来源
2019 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ) | 2019年
关键词
multifractal analysis; multifractal spectrum; mammogram; breast density classification; image enhancement; RISK;
D O I
10.1109/ivcnz48456.2019.8961037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel method for breast density classification in digital mammograms using multifractal spectrum and histogram analysis. The multifractal spectrum is used to capture fibroglandular texture features in sub-images extracted from the breast region of mammograms, and feature vectors extracted from multifractal spectrum are used to classify sub-images into fat or dense category and to calculate breast percent density. For enhancing texture features and improving classification accuracy of breast density, standard deviation and skewness analysis of histogram on mammograms are considered. A full-field digital mammography (FFDM) dataset INbreast is used to test our proposed method and experimental results of breast density estimation outperform other reported methods, giving a higher classification accuracy (83.33%).
引用
收藏
页数:6
相关论文
共 50 条
  • [31] EEG based cognitive task classification using multifractal detrended fluctuation analysis
    Gaurav, G.
    Anand, R. S.
    Kumar, Vinod
    COGNITIVE NEURODYNAMICS, 2021, 15 (06) : 999 - 1013
  • [32] EEG based cognitive task classification using multifractal detrended fluctuation analysis
    G. Gaurav
    R. S. Anand
    Vinod Kumar
    Cognitive Neurodynamics, 2021, 15 : 999 - 1013
  • [33] Paediatric heart sound signal analysis towards classification using multifractal spectra
    Gavrovska, Ana
    Zajic, Goran
    Bogdanovic, Vesna
    Reljin, Irini
    Reljin, Branimir
    PHYSIOLOGICAL MEASUREMENT, 2016, 37 (09) : 1556 - 1572
  • [34] Classification of modulated signals using multifractal features
    He, Tao
    Zhou, Zheng-Ou
    Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A, 2008, 31 (02): : 335 - 338
  • [35] Classification of brain SPECT imaging using 3D local multifractal spectrum for epilepsy detection
    R. Lopes
    P. Dubois
    N. Makni
    W. Szurhaj
    S. Maouche
    N. Betrouni
    International Journal of Computer Assisted Radiology and Surgery, 2008, 3 : 341 - 346
  • [36] Multifractal Analysis of SAR Images for Unsupervised Classification
    Pant, Triloki
    Singh, Dharmendra
    Srivastava, Tanuja
    INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN MICROWAVE THEORY AND APPLICATIONS, PROCEEDINGS, 2008, : 427 - +
  • [37] Classification of modulated signals using multifractal features
    He, Tao
    Zhou, Zheng-Ou
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2008, 31 (02) : 335 - 338
  • [38] WAVELET LEADER MULTIFRACTAL ANALYSIS FOR TEXTURE CLASSIFICATION
    Wendt, Herwig
    Abry, Patrice
    Jaffard, Stephane
    Ji, Hui
    Shen, Zuowei
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3829 - +
  • [39] Classification of brain SPECT imaging using 3D local multifractal spectrum for epilepsy detection
    Lopes, R.
    Dubois, P.
    Makni, N.
    Szurhaj, W.
    Maouche, S.
    Betrouni, N.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2008, 3 (3-4) : 341 - 346
  • [40] Characterization and classification of intracardiac atrial fibrillation signals using the time-singularity multifractal spectrum distribution
    Urda-Benitez, Robert D.
    Castro-Ospina, Andres E.
    Orozco-Duque, Andres
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96