Hierarchically decorated electrospun poly(ε-caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering

被引:0
|
作者
Jing, Xin [1 ]
Jin, Elizabeth [2 ,3 ]
Mi, Hao-Yang [1 ]
Li, Wan-Ju [2 ,3 ]
Peng, Xiang-Fang [1 ]
Turng, Lih-Sheng [4 ]
机构
[1] S China Univ Technol, Natl Engn Res Ctr Novel Equipment Polymer Proc, Key Lab Polymer Proc Engn, Minist Educ, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Wisconsin, Dept Orthoped & Rehabil, Madison, WI USA
[3] Univ Wisconsin, Dept Biomed Engn, Madison, WI USA
[4] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI USA
关键词
SHISH-KEBAB STRUCTURE; POLYMER CRYSTALLIZATION; MECHANICAL-PROPERTIES; APATITE FORMATION; COLLAGEN FIBRILS; IN-VITRO; SCAFFOLDS; MINERALIZATION; HYDROXYAPATITE; POLYCAPROLACTONE;
D O I
10.1007/s10853-015-8933-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bone is a nanocomposite comprised of two main components, nanohydroxyapatite (nHA) and Type I collagen. The aim of this study is to mimic the nanotopography of collagen fibrils in bone tissue and to modulate their cellular functions by nanoscale stimulation. Three-dimensional structures consisting of electrospun poly(ecaprolactone) (PCL) and PCL/nHA composite nanofibers decorated by periodically spaced PCL crystal lamellae (shish-kebab structure) were created. It was found that the hierarchically decorated nanostructure not only enhanced the mechanical properties of the scaffolds but also changed the surface wettability behavior of the scaffolds. The enhanced surface wettability facilitated biomimetic mineralization through apatite deposition when exposed to simulated body fluids (SBF). MG-63, an osteosarcoma cell line which behaves similarly to osteoblasts, was used to study the cellular response to the scaffolds. Data suggest kebab crystal nanotopography facilitating cell attachment and proliferation. Functional assays, which quantify alkaline phosphatase (ALP) and calcium expression, revealed increased ALP activity and increased calcium expression on decorated nanofibers. In addition, compared with other scaffolds, the cells on PCL/nHA nanofibrous shish-kebab-structured scaffolds showed obvious extended pseudopodia of the filaments in the cytoskeleton study, demonstrating better interactions between cells and scaffolds.
引用
收藏
页码:4174 / 4186
页数:13
相关论文
共 50 条
  • [41] Poly(-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering
    Hwang, Patrick T. J.
    Murdock, Kyle
    Alexander, Grant C.
    Salaam, Amanee D.
    Ng, Joshua I.
    Lim, Dong-Jin
    Dean, Derrick
    Jun, Ho-Wook
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2016, 104 (04) : 1017 - 1029
  • [42] Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering
    Ghasemi-Mobarakeh, Laleh
    Prabhakaran, Molamma P.
    Morshed, Mohammad
    Nasr-Esfahani, Mohammad-Hossein
    Ramakrishna, Seeram
    BIOMATERIALS, 2008, 29 (34) : 4532 - 4539
  • [43] Biodegradable electrospun poly(L-lactide-co-ε-caprolactone)/polyethylene glycol/bioactive glass composite scaffold for bone tissue engineering
    de Souza, Joyce R.
    Cardoso, Lais M.
    de Toledo, Priscila T. A.
    Rahimnejad, Maedeh
    Kito, Leticia T.
    Thim, Gilmar P.
    Campos, Tiago M. B.
    Borges, Alexandre L. S.
    Bottino, Marco C.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2024, 112 (05)
  • [44] Graphene oxide-enriched poly(ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications
    Mohammadi, Sepideh
    Shafiei, Seyedeh Sara
    Asadi-Eydivand, Mitra
    Ardeshir, Mahmoud
    Solati-Hashjin, Mehran
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2017, 32 (03) : 325 - 342
  • [45] Electrospun nanofibers for tissue engineering
    Mo, X. (xmm@dhu.edu.cn), 1600, Binary Information Press, 65 Weed Ave, Norwalk, CT 06850, United States (06):
  • [46] Advances in Electrospun Poly(Ε-caprolactone)-Based Nanofibrous Scaffolds for Tissue Engineering
    Robles, Karla N.
    Zahra, Fatima tuz
    Mu, Richard
    Giorgio, Todd
    Polymers, 2024, 16 (20)
  • [47] Novel Piezoelectric and Osteoinductive Electrospun Nanofibers for Bone Tissue Engineering
    Barbosa, Frederico
    Garrudo, Fabio F. F.
    Alberte, Paola S.
    Resina, Leonor
    Carvalho, Marta S.
    Ferreira, Frederico C.
    Silva, Joao C.
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)
  • [48] Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering
    Ding, Huixiu
    Cheng, Yizhu
    Niu, Xiaolian
    Hu, Yinchun
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2020, 32 (04) : 536 - 561
  • [49] Optimizing the mechanical properties of electrospun polycaprolactone and nanohydroxyapatite composite nanofibers
    Doustgani, A.
    Vasheghani-Farahani, E.
    Soleimani, M.
    Hashemi-Najafabadi, S.
    COMPOSITES PART B-ENGINEERING, 2012, 43 (04) : 1830 - 1836
  • [50] Non-Fouling Biodegradable Poly(ε-caprolactone) Nanofibers for Tissue Engineering
    Kostina, Nina Yu.
    Pop-Georgievski, Ognen
    Bachmann, Michael
    Neykova, Neda
    Bruns, Michael
    Michalek, Jiri
    Bastmeyer, Martin
    Rodriguez-Emmenegger, Cesar
    MACROMOLECULAR BIOSCIENCE, 2016, 16 (01) : 83 - 94