Flow structures at an idealized bifurcation: a numerical experiment

被引:40
|
作者
Hardy, R. J. [1 ]
Lane, S. N. [2 ]
Yu, D. [3 ]
机构
[1] Univ Durham, Dept Geog, Durham DH1 3LE, England
[2] Univ Lausanne, Inst Geog, Fac Geosci & Environm, CH-1015 Lausanne, Switzerland
[3] Univ Loughborough, Dept Geog, Loughborough LE11 3TU, Leics, England
关键词
CFD; bifurcations; braided rivers; geometric sensitivity analysis; MOBILE BED; ROUGHNESS; DYNAMICS; MODELS; RIVERS; BENDS;
D O I
10.1002/esp.2235
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
River bifurcations are key nodes within braided river systems controlling the flow and sediment partitioning and therefore the dynamics of the river braiding process. Recent research has shown that certain geometrical configurations induce instabilities that lead to downstream mid-channel bar formation and the formation of bifurcations. However, we currently have a poor understanding of the flow division process within bifurcations and the flow dynamics in the downstream bifurcates, both of which are needed to understand bifurcation stability. This paper presents results of a numerical sensitivity experiment undertaken using computational fluid dynamics (CFD) with the purpose of understanding the flow dynamics of a series of idealized bifurcations. A geometric sensitivity analysis is undertaken for a range of channel slopes (0.005 to 0.03), bifurcation angles (22 degrees to 42 degrees) and a restricted set of inflow conditions based upon simulating flow through meander bends with different curvature on the flow field dynamics through the bifurcation. The results demonstrate that the overall slope of the bifurcation affects the velocity of flow through the bifurcation and when slope asymmetry is introduced, the flow structures in the bifurcation are modified. In terms of bifurcation evolution the most important observation appears to be that once slope asymmetry is greater than 0.2 the flow within the steep bifurcate shows potential instability and the potential for alternate channel bar formation. Bifurcation angle also defines the flow structures within the bifurcation with an increase in bifurcation angle increasing the flow velocity down both bifurcates. However, redistributive effects of secondary circulation caused by upstream curvature can very easily counter the effects of local bifurcation characteristics. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:2083 / 2096
页数:14
相关论文
共 50 条
  • [32] Numerical modelling of simulated blood flow in idealized composite arterial coronary grafts: Transient flow
    Politis, A. K.
    Stavropoulos, G. P.
    Christolis, M. N.
    Panagopoulos, P. G.
    Vlachos, N. S.
    Markatos, N. C.
    JOURNAL OF BIOMECHANICS, 2008, 41 (01) : 25 - 39
  • [33] Influences of structures on urban ventilation: A numerical experiment
    Liu Huizhi
    Sang Jianguo
    Zhang Boyin
    Johnny C. L. Chan
    Andrew Y. S. Cheng
    Liu Heping
    Advances in Atmospheric Sciences, 2002, 19 (6) : 1045 - 1054
  • [34] The Inverse Honeycomb Structures in Numerical Modeling and Experiment
    John, Malgorzata
    John, Antoni
    Skarka, Wojciech
    MECHANIKA, 2018, 24 (03): : 299 - 304
  • [35] Influences of structures on urban ventilation: A numerical experiment
    Liu, HZ
    Sang, JG
    Zhang, BY
    Chan, JCL
    Cheng, AYS
    Liu, HP
    ADVANCES IN ATMOSPHERIC SCIENCES, 2002, 19 (06) : 1045 - 1054
  • [36] Supercritical channel flow in the coastal atmospheric boundary layer:: Idealized numerical simulations
    Söderberg, S
    Tjernström, M
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D16) : 17811 - 17829
  • [37] Flow splitting at the bifurcation between two valleys: idealized simulations in comparison with Mesoscale Alpine Programme observations
    Ph. Drobinski
    S. Bastin
    J. Dusek
    G. Zängl
    P. H. Flamant
    Meteorology and Atmospheric Physics, 2006, 92 : 285 - 306
  • [38] Flow splitting at the bifurcation between two valleys:: idealized simulations in comparison with Mesoscale Alpine Programme observations
    Drobinski, P
    Bastin, S
    Dusek, J
    Zängl, G
    Flamant, PH
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2006, 92 (3-4) : 285 - 306
  • [39] Idealized numerical simulation experiment of ice seeding in convective clouds using a bin microphysics scheme
    Jiefan Yang
    Hengchi Lei
    Atmospheric and Oceanic Science Letters, 2022, 15 (06) : 37 - 43
  • [40] Idealized numerical simulation experiment of ice seeding in convective clouds using a bin microphysics scheme
    Yang, Jiefan
    Lei, Hengchi
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2022, 15 (06)