DIFFERENCE BETWEEN RIESZ DERIVATIVE AND FRACTIONAL LAPLACIAN ON THE PROPER SUBSET OF R

被引:3
|
作者
Jiao, Caiyu [1 ]
Khaliq, Abdul [2 ]
Li, Changpin [1 ]
Wang, Hexiang [3 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[3] Kashi Univ, Sch Math & Stat, Kashi 844006, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Liouville derivative; Riesz deriva-tive; fractional Laplacian; HIGH-ORDER ALGORITHMS; EQUATIONS;
D O I
10.1515/fca-2021-0074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In general, the Riesz derivative and the fractional Laplacian are equivalent on R. But they generally are not equivalent with each other on any proper subset of R. In this paper, we focus on the difference between them on the proper subset of R.
引用
收藏
页码:1716 / 1734
页数:19
相关论文
共 50 条
  • [41] ANALYTICAL APPROXIMATION OF TIME-FRACTIONAL TELEGRAPH EQUATION WITH RIESZ SPACE-FRACTIONAL DERIVATIVE
    Mohammadian, Safiyeh
    Mahmoudi, Yaghoub
    Saei, Farhad Dastmalchi
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2020, 12 (03): : 243 - 258
  • [42] Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative
    Kolade M. Owolabi
    Abdon Atangana
    The European Physical Journal Plus, 131
  • [43] Difference method for the differential equation with fractional derivative
    Öztürk, I
    Shkhanekov, MH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (05): : 517 - 523
  • [44] Lattice fractional diffusion equation in terms of a Riesz-Caputo difference
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Deng, Zhen-Guo
    Zeng, Sheng-Da
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 438 : 335 - 339
  • [45] The 0-fractional perimeter between fractional perimeters and Riesz potentials
    De Luca, Lucia
    Novaga, Matteo
    Ponsiglione, Marcello
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (04) : 1559 - 1596
  • [46] A paranormed fractional ordered Euler-Riesz difference sequence space
    Bektas, Cigdem A.
    Bayram, Erdal
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (05)
  • [47] Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative
    Arshad, Sadia
    Huang, Jianfei
    Khaliq, Abdul Q. M.
    Tang, Yifa
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 1 - 15
  • [48] Existence and uniqueness of solution for a nonlinear fractional problem involving the distributional Riesz derivative
    Abada, Esma
    Lakhal, Hakim
    Maouni, Messaoud
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6181 - 6193
  • [50] On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative
    Lo, Catharine W. K.
    Rodrigues, Jose Francisco
    PORTUGALIAE MATHEMATICA, 2023, 80 (1-2) : 157 - 205