DIFFERENCE BETWEEN RIESZ DERIVATIVE AND FRACTIONAL LAPLACIAN ON THE PROPER SUBSET OF R

被引:3
|
作者
Jiao, Caiyu [1 ]
Khaliq, Abdul [2 ]
Li, Changpin [1 ]
Wang, Hexiang [3 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[3] Kashi Univ, Sch Math & Stat, Kashi 844006, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Liouville derivative; Riesz deriva-tive; fractional Laplacian; HIGH-ORDER ALGORITHMS; EQUATIONS;
D O I
10.1515/fca-2021-0074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In general, the Riesz derivative and the fractional Laplacian are equivalent on R. But they generally are not equivalent with each other on any proper subset of R. In this paper, we focus on the difference between them on the proper subset of R.
引用
收藏
页码:1716 / 1734
页数:19
相关论文
共 50 条
  • [1] Difference Between Riesz Derivative and Fractional Laplacian on the Proper Subset of ℝ
    Caiyu Jiao
    Abdul Khaliq
    Changpin Li
    Hexiang Wang
    Fractional Calculus and Applied Analysis, 2021, 24 : 1716 - 1734
  • [2] Riesz potential versus fractional Laplacian
    Ortigueira, Manuel D.
    Laleg-Kirati, Taous-Meriem
    Tenreiro Machado, J. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [3] The Orthogonal Riesz Fractional Derivative
    Bouzeffour, Fethi
    AXIOMS, 2024, 13 (10)
  • [4] Fractional Laplacian matrix on the finite periodic linear chain and its periodic Riesz fractional derivative continuum limit
    Michelitsch, Thomas M.
    Collet, Bernard
    Nowakowski, Andrzej F.
    Nicolleau, Franck C. G. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (29)
  • [5] CRANK-NICOLSON DIFFERENCE SCHEME FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION WITH THE RIESZ SPACE FRACTIONAL DERIVATIVE
    Guo, Changhong
    Fang, Shaomei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1074 - 1094
  • [6] An overdetermined problem in Riesz-potential and fractional Laplacian
    Lu, Guozhen
    Zhu, Jiuyi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) : 3036 - 3048
  • [7] A RIESZ BASIS GALERKIN METHOD FOR THE TEMPERED FRACTIONAL LAPLACIAN
    Zhang, Zhijiang
    Deng, Weihua
    Karniadakis, George Em
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) : 3010 - 3039
  • [8] Research on fractional symmetry based on Riesz derivative
    Wang, Cai
    Song, Chuan-Jing
    AIP ADVANCES, 2024, 14 (06)
  • [9] On solvability of differential equations with the Riesz fractional derivative
    Fazli, Hossein
    Sun, HongGuang
    Nieto, Juan J.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (01) : 197 - 205
  • [10] Crank-Nicolson difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative
    Wang, Dongling
    Xiao, Aiguo
    Yang, Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 670 - 681