Thermal Conductivity and Interface Thermal Conductance in Composites of Titanium With Graphene Platelets

被引:28
|
作者
Zheng, H. [1 ]
Jaganandham, K. [1 ]
机构
[1] N Carolina State Univ, Raleigh, NC 27695 USA
来源
关键词
composite; graphene platelet; titanium; interface thermal conductance; transient thermo reflectance; thermal conductivity; TRANSPORT; GRAPHITE; FILM;
D O I
10.1115/1.4026488
中图分类号
O414.1 [热力学];
学科分类号
摘要
Composite films of graphene platelets (GPs) in titanium matrix were prepared on silicon (001) substrates by physical vapor deposition of titanium using magnetron sputtering and dispersion of graphene platelets. The graphene platelets were dispersed six times after each deposition of titanium film to form the composite film. Samples of titanium film and titanium film with a single layer of dispersed graphene platelets were also prepared by the same procedure. The distribution of the graphene platelets in the film was analyzed by scanning electron microscopy. Energy dispersive spectrometry was used to infer the absence of interstitial elements. The thermal conductivity of the composite and the interface thermal conductance between titanium and silicon or titanium and graphene platelets was determined by three-omega and transient thermo reflectance (TTR) techniques, respectively. The results indicate that the thermal conductivity of the composite is isotropic and improved to 40Wm(-1)K(-1) from 21 Wm(-1)K(-1) for Ti. The interface thermal conductance between titanium and silicon is found to be 200 MWm(-2)K(-1) and that between titanium and graphene platelets in the C-direction to be 22 MWm(-2)K(-1). Modeling using acoustic and diffuse mismatch models was carried out to infer the magnitude of interface thermal conductance. The results indicate that the higher value of interface thermal conductance between graphene platelets in the ab plane and titanium matrix is responsible for the isotropic and improved thermal conductivity of the composite. Effective mean field analysis showed that the interface thermal conductance in the ab plane is high at 440 MWm(-2)K(-1) when GPs consist of 8 atomic layers of graphene so that it is not a limitation to improve the thermal conductivity of the composites.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Measurement of the thermal conductance of the graphene/SiO2 interface
    Mak, Kin Fai
    Lui, Chun Hung
    Heinz, Tony F.
    APPLIED PHYSICS LETTERS, 2010, 97 (22)
  • [32] Effect of interface on the thermal conductivity of carbon nanotube composites
    Singh, Indra Vir
    Tanaka, Masataka
    Endo, Morinobu
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2007, 46 (09) : 842 - 847
  • [33] Bounds on the effective thermal conductivity of composites with imperfect interface
    Wu, Linzhi
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2010, 48 (09) : 783 - 794
  • [34] Enhanced thermal conductivity of graphene nanoplatelets epoxy composites
    Jarosinski, Lukasz
    Rybak, Andrzej
    Gaska, Karolina
    Kmita, Grzegorz
    Porebska, Renata
    Kapusta, Czeslaw
    MATERIALS SCIENCE-POLAND, 2017, 35 (02): : 382 - 389
  • [35] Interface effect on thermal conductivity of carbon nanotube composites
    Nan, CW
    Liu, G
    Lin, YH
    Li, M
    APPLIED PHYSICS LETTERS, 2004, 85 (16) : 3549 - 3551
  • [36] Effective thermal conductivity of graphene-based composites
    Chu, Ke
    Jia, Cheng-chang
    Li, Wen-sheng
    APPLIED PHYSICS LETTERS, 2012, 101 (12)
  • [37] Modeling the thermal conductivity of graphene nanoplatelets reinforced composites
    Chu, Ke
    Li, Wen-sheng
    Dong, Hong-feng
    Tang, Fu-ling
    EPL, 2012, 100 (03)
  • [38] Thermal Percolation Behavior of Graphene Nanoplatelets/Polyphenylene Sulfide Thermal Conductivity Composites
    Gu, Junwei
    Xie, Chao
    Li, Hailin
    Dang, Jing
    Geng, Wangchang
    Zhang, Qiuyu
    POLYMER COMPOSITES, 2014, 35 (06) : 1087 - 1092
  • [39] Thermal conductivity of composites with heterogeneous fillers under effects of interface thermal resistance
    Wang, Xiaojian
    Li, Honghong
    Zhang, Yuanyuan
    Fu, Xinru
    Huang, Simin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 231
  • [40] Thermal transport in graphene–HMX composites with grafted interface
    Zengqiang Cao
    Xiaoyu Huang
    Yanqing Wang
    Chaoyang Zhang
    Xianggui Xue
    Guansong He
    Hongyan Wang
    Yuxiang Ni
    Journal of Materials Science, 2023, 58 : 4668 - 4678