DEGENERATE SCHUBERT VARIETIES IN TYPE A

被引:4
|
作者
Chirivi, Rocco [1 ]
Fang, Xin [2 ]
Fourier, Ghislain [3 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Lecce, Italy
[2] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[3] Rhein Westfal TH Aachen, Lehrstuhl Algebra & Darstellungstheorie, D-52056 Aachen, Germany
关键词
FLAG VARIETIES; MODULES;
D O I
10.1007/s00031-020-09558-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce rectangular elements in the symmetric group. In the framework of PBW degenerations, we show that in type A the degenerate Schubert variety associated with a rectangular element is indeed a Schubert variety in a partial ag variety of the same type with larger rank. Moreover, the degenerate Demazure module associated with a rectangular element is isomorphic to the Demazure module for this particular Schubert variety of larger rank. This generalises previous results by Cerulli Irelli, Lanini and Littelmann for the PBW degenerate ag variety in [CLL].
引用
收藏
页码:1189 / 1215
页数:27
相关论文
共 50 条
  • [31] COMINUSCULE POINTS AND SCHUBERT VARIETIES
    Graham, William
    Kreiman, Victor
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (06) : 2519 - 2548
  • [32] Total positivity in Schubert varieties
    Berenstein, A
    Zelevinsky, A
    COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (01) : 128 - 166
  • [33] Schubert unions in Grassmann varieties
    Hansen, Johan P.
    Johnsen, Trygve
    Ranestad, Kristian
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (04) : 738 - 750
  • [34] Toric degenerations of Schubert varieties
    Caldero P.
    Transformation Groups, 2002, 7 (1) : 51 - 60
  • [35] On tangent spaces to Schubert varieties
    Lakshmibai, V
    JOURNAL OF ALGEBRA, 2000, 230 (01) : 222 - 244
  • [36] On Tangent Cones of Schubert Varieties
    Fuchs D.
    Kirillov A.
    Morier-Genoud S.
    Ovsienko V.
    Arnold Mathematical Journal, 2017, 3 (4) : 451 - 482
  • [37] Geometric crystals on Schubert varieties
    Nakashima, T
    JOURNAL OF GEOMETRY AND PHYSICS, 2005, 53 (02) : 197 - 225
  • [38] Elliptic classes of Schubert varieties
    Shrawan Kumar
    Richárd Rimányi
    Andrzej Weber
    Mathematische Annalen, 2020, 378 : 703 - 728
  • [39] UNIVERSAL GRAPH SCHUBERT VARIETIES
    BRENDAN PAWLOWSKI
    Transformation Groups, 2021, 26 : 1417 - 1461
  • [40] Schubert varieties and free braidedness
    Green, RM
    Losonczy, J
    TRANSFORMATION GROUPS, 2004, 9 (04) : 327 - 336