共 50 条
INVERSE DEGREE, RANDIC INDEX AND HARMONIC INDEX OF GRAPHS
被引:16
|作者:
Das, Kinkar Ch.
[1
]
Balachandran, Selvaraj
[2
]
Gutman, Ivan
[3
]
机构:
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] SASTRA Univ, Sch Humanities & Sci, Dept Math, Thanjavur, India
[3] Univ Kragujevac, Fac Sci, POB 60, Kragujevac 34000, Serbia
基金:
新加坡国家研究基金会;
关键词:
Degree (of vertex);
Inverse degree;
Randic index;
Harmonic index;
TOPOLOGICAL INDEXES;
DIAMETER;
CONNECTIVITY;
D O I:
10.2298/AADM1702304D
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G be a graph with vertex set V and edge set E. Let d(i) be the degree of the vertex v(i) of G. The inverse degree, Randic index, and harmonic index of G are defined as I D = Sigma v(i)epsilon V-1/di, R = Sigma v(i)v(j) epsilon E 1/root d(i)d(j) , and H = Sigma v(i)v(j) epsilon E 2/(d(i) + d(j)), respectively. We obtain relations between ID and R as well as between ID and H. Moreover, we prove that in the case of trees, ID > R and ID > H.
引用
收藏
页码:304 / 313
页数:10
相关论文