INVERSE DEGREE, RANDIC INDEX AND HARMONIC INDEX OF GRAPHS

被引:16
|
作者
Das, Kinkar Ch. [1 ]
Balachandran, Selvaraj [2 ]
Gutman, Ivan [3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] SASTRA Univ, Sch Humanities & Sci, Dept Math, Thanjavur, India
[3] Univ Kragujevac, Fac Sci, POB 60, Kragujevac 34000, Serbia
基金
新加坡国家研究基金会;
关键词
Degree (of vertex); Inverse degree; Randic index; Harmonic index; TOPOLOGICAL INDEXES; DIAMETER; CONNECTIVITY;
D O I
10.2298/AADM1702304D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V and edge set E. Let d(i) be the degree of the vertex v(i) of G. The inverse degree, Randic index, and harmonic index of G are defined as I D = Sigma v(i)epsilon V-1/di, R = Sigma v(i)v(j) epsilon E 1/root d(i)d(j) , and H = Sigma v(i)v(j) epsilon E 2/(d(i) + d(j)), respectively. We obtain relations between ID and R as well as between ID and H. Moreover, we prove that in the case of trees, ID > R and ID > H.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 50 条