Molecular simulations of confined liquids: An alternative to the grand canonical Monte Carlo simulations

被引:40
|
作者
Ghoufi, Aziz [1 ]
Morineau, Denis [1 ]
Lefort, Ronan [1 ]
Hureau, Ivanne [1 ]
Hennous, Leila [1 ]
Zhu, Haochen [2 ,3 ]
Szymczyk, Anthony [2 ,3 ]
Malfreyt, Patrice [4 ]
Maurin, Guillaume [5 ]
机构
[1] Univ Rennes 1, Inst Phys Rennes, CNRS, UMR 6251, F-35042 Rennes, France
[2] Univ Rennes 1, CNRS, UMR 6226, F-35042 Rennes, France
[3] Univ Europeenne Bretagne, F-35000 Rennes, France
[4] CNRS, LTIM, Lab Thermodynam & Interact Mol, UMR 6272, F-63000 Clermont Ferrand, France
[5] Univ Montpellier 2, Inst Charles Gerhardt Montpellier, CNRS, ENSCM,UMR 5253,UM2, F-34095 Montpellier 05, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 07期
关键词
FREE-ENERGY PERTURBATION; DYNAMICS SIMULATIONS; PRESSURE TENSOR; SURFACE; ADSORPTION; MIXTURES; WATER; TRANSITIONS; INTEGRATION; SEPARATION;
D O I
10.1063/1.3554641
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Commonly, the confinement effects are studied from the grand canonical Monte Carlo (GCMC) simulations from the computation of the density of liquid in the confined phase. The GCMC-modeling and chemical potential (mu) calculations are based on the insertion/deletion of the real and ghost particle, respectively. At high density, i.e., at high pressure or low temperature, the insertions fail from the Widom insertions while the performing methods as expanded method or perturbation approach are not efficient to treat the large and complex molecules. To overcome this problem we use a simple and efficient method to compute the liquid's density in the confined medium. This method does not require the precalculation of mu and is an alternative to the GCMC simulations. From the isothermal-isosurface-isobaric statistical ensemble we consider the explicit framework/liquid external interface to model an explicit liquid's reservoir. In this procedure only the liquid molecules undergo the volume changes while the volume of the framework is kept constant. Therefore, this method is described in the Np(n)AV(f)T statistical ensemble, where N is the number of particles, p(n) is the normal pressure, V-f is the volume of framework, A is the surface of the solid/fluid interface, and T is the temperature. This approach is applied and validated from the computation of the density of the methanol and water confined in the mesoporous cylindrical silica nanopores and the MIL-53(Cr) metal organic framework type, respectively. (C) 2011 American Institute of Physics. [doi:10.1063/1.3554641]
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [41] Description of the Interfacial Behavior of Benzonitrile at Icy Surfaces by Grand Canonical Monte Carlo Simulations
    Honti, Barbara
    Szori, Milan
    Jedlovszky, Pal
    JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 126 (07): : 1221 - 1232
  • [42] Grand canonical Monte Carlo simulations of adsorption of mixtures of xylene molecules in faujasite zeolites
    Lachet, V
    Boutin, A
    Tavitian, B
    Fuchs, AH
    FARADAY DISCUSSIONS, 1997, 106 : 307 - 323
  • [43] The Grand Canonical Monte Carlo Simulations of Benzene and Propylene in ITQ-1 Zeolite
    Li Li ZHU
    Ting Jun HOU
    Xiao Jie XU(College of Chemistry and Molecular Engineering
    Chinese Chemical Letters, 2000, (07) : 623 - 626
  • [44] Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions
    Wang, Zhenjiu
    Assaad, Fakher F.
    Toldin, Francesco Parisen
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [45] Transport property of hydrogen sulfide in amorphous polyethylene using grand canonical Monte Carlo and molecular dynamics simulations
    Huang, Hao
    Liu, Bing
    Zheng, Dukui
    Xin, Fubin
    Shi, Xian
    Fuel, 2024, 360
  • [46] MOLECULAR-DYNAMICS AND MONTE-CARLO SIMULATIONS IN THE GRAND CANONICAL ENSEMBLE - LOCAL VERSUS GLOBAL CONTROL
    PAPADOPOULOU, A
    BECKER, ED
    LUPKOWSKI, M
    VANSWOL, F
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (06): : 4897 - 4908
  • [47] Insights into hydrogen and methane storage capacities: Grand canonical Monte Carlo simulations of SIGSUA
    Granja-DelRio, A.
    Cabria, I.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (15):
  • [48] Grand canonical Monte Carlo simulations of nonrigid molecules: Siting and segregation in silicalite zeolite
    Gupta, A
    Clark, LA
    Snurr, RQ
    LANGMUIR, 2000, 16 (08) : 3910 - 3919
  • [49] Hydrogen Storage Capacity of Carbon-Foams: Grand Canonical Monte Carlo Simulations
    Singh, Abhishek K.
    Lu, Jianxin
    Aga, Rachel S.
    Yakobson, Boris I.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (05): : 2476 - 2482
  • [50] Phase equilibria of methane clathrate hydrates from Grand Canonical Monte Carlo simulations
    Lasich, Matthew
    Mohammadi, Amir H.
    Bolton, Kim
    Vrabec, Jadran
    Ramjugernath, Deresh
    FLUID PHASE EQUILIBRIA, 2014, 369 : 47 - 54