Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

被引:48
|
作者
Liu, Ying [1 ,2 ,3 ]
Liu, Xiaoheng [1 ]
Wang, Xin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Minist Educ, Key Lab Soft Chem & Funct Mat, Nanjing 210094, Peoples R China
[2] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
来源
关键词
GOLD NANOPARTICLES; PROTEIN; COOPERATIVITY; PEPTIDE; TEMPLATES; MECHANISM; CLUSTERS; BINDING;
D O I
10.1007/s11671-010-9756-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80 degrees C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noblemetal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional a-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties
    Shen, Chengmin
    Hui, Chao
    Yang, Tianzhong
    Xiao, Congwen
    Tian, Jifa
    Bao, Lihong
    Chen, Shutang
    Ding, Hao
    Gao, Hongjun
    CHEMISTRY OF MATERIALS, 2008, 20 (22) : 6939 - 6944
  • [22] Carbon-Aerogel-Supported Noble-Metal Nanoparticles as Hydrogenation Catalysts
    Fatnassi, Asma
    Cammarano, Claudia
    Oliviero, Erwan
    Hulea, Vasile
    Brun, Nicolas
    ACS APPLIED NANO MATERIALS, 2022, 5 (10) : 14227 - 14234
  • [23] Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles
    Sun, XM
    Li, YD
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (05) : 597 - 601
  • [24] Quantum-size effects in SERS from noble-metal nanoparticles
    Pustovit, VN
    Shahbazyan, TV
    MICROELECTRONICS JOURNAL, 2005, 36 (3-6) : 559 - 563
  • [25] A STUDY OF THE DEALLOYING RESISTANCE OF NOBLE-METAL DENTAL ALLOYS
    HILLER, K
    KAISER, H
    KAESCHE, H
    BRAMER, W
    SPERNER, F
    WERKSTOFFE UND KORROSION-MATERIALS AND CORROSION, 1982, 33 (02): : 83 - 88
  • [26] Cryogelation of Chitosan Using Noble-Metal Ions: In Situ Formation of Nanoparticles
    Berillo, Dmitriy
    Mattiasson, Bo
    Kirsebom, Harald
    BIOMACROMOLECULES, 2014, 15 (06) : 2246 - 2255
  • [27] Diffusion dynamics of laser-ablated noble-metal nanoparticles in liquids
    Compagnini, G.
    Messina, E.
    Cataliotti, R. S.
    Grillo, A.
    Giaquinta, G.
    PHILOSOPHICAL MAGAZINE LETTERS, 2009, 89 (04) : 250 - 256
  • [28] THEORETICAL-STUDY OF ETHYLENE NOBLE-METAL COMPLEXES
    NICOLAS, G
    SPIEGELMANN, F
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (14) : 5410 - 5419
  • [29] Leveraging bismuth immiscibility to create highly concave noble-metal nanoparticles
    King, Melissa E.
    Xu, Yuting
    Nagarajan, Porvajja
    Mason, Noah L.
    Branco, Anthony J.
    Sullivan, Connor S.
    Silva, Samantha M.
    Jeong, Sangmin
    Che, Fanglin
    Ross, Michael B.
    CHEM, 2024, 10 (06): : 1725 - 1740
  • [30] Growth of CdSe quantum rods and multipods seeded by noble-metal nanoparticles
    Yong, Ken-Tye
    Sahoo, Yudhisthira
    Swihart, Mark T.
    Prasad, Paras N.
    ADVANCED MATERIALS, 2006, 18 (15) : 1978 - +