Deep learning for computational biology

被引:884
|
作者
Angermueller, Christof [1 ]
Parnamaa, Tanel [2 ,3 ]
Parts, Leopold [2 ,3 ]
Stegle, Oliver [1 ]
机构
[1] European Bioinformat Inst, European Mol Biol Lab, Wellcome Trust Genome Campus, Cambridge, England
[2] Univ Tartu, Dept Comp Sci, Tartu, Estonia
[3] Wellcome Trust Sanger Inst, Wellcome Trust Genome Campus, Cambridge, England
基金
欧洲研究理事会; 英国惠康基金;
关键词
cellular imaging; computational biology; deep learning; machine learning; regulatory genomics; GENE-EXPRESSION VARIATION; NEURAL-NETWORKS; RNA; PERCEPTRON; PREDICTION; ALGORITHM; DNA;
D O I
10.15252/msb.20156651
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Opportunities and obstacles for deep learning in biology and medicine
    Ching, Travers
    Himmelstein, Daniel S.
    Beaulieu-Jones, Brett K.
    Kalinin, Alexandr A.
    Do, Brian T.
    Way, Gregory P.
    Ferrero, Enrico
    Agapow, Paul-Michael
    Zietz, Michael
    Hoffman, Michael M.
    Xie, Wei
    Rosen, Gail L.
    Lengerich, Benjamin J.
    Israeli, Johnny
    Lanchantin, Jack
    Woloszynek, Stephen
    Carpenter, Anne E.
    Shrikumar, Avanti
    Xu, Jinbo
    Cofer, Evan M.
    Lavender, Christopher A.
    Turaga, Srinivas C.
    Alexandari, Amr M.
    Lu, Zhiyong
    Harris, David J.
    DeCaprio, Dave
    Qi, Yanjun
    Kundaje, Anshul
    Peng, Yifan
    Wiley, Laura K.
    Segler, Marwin H. S.
    Boca, Simina M.
    Swamidass, S. Joshua
    Huang, Austin
    Gitter, Anthony
    Greene, Casey S.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
  • [42] TensorFlow: Biology's Gateway to Deep Learning?
    Rampasek, Ladislav
    Goldenberg, Anna
    CELL SYSTEMS, 2016, 2 (01) : 12 - 14
  • [43] Deep Learning Concepts and Applications for Synthetic Biology
    Beardall, William A. V.
    Stan, Guy-Bart
    Dunlop, Mary J.
    GEN BIOTECHNOLOGY, 2022, 1 (04): : 360 - 371
  • [44] Deep learning for bioimage analysis in developmental biology
    Hallou, Adrien
    Yevick, Hannah G.
    Dumitrascu, Bianca
    Uhlmann, Virginie
    DEVELOPMENT, 2021, 148 (18):
  • [45] Computational interference microscopy enabled by deep learning
    Jiao, Yuheng
    He, Yuchen R.
    Kandel, Mikhail E.
    Liu, Xiaojun
    Lu, Wenlong
    Popescu, Gabriel
    APL PHOTONICS, 2021, 6 (04)
  • [46] Lensless computational imaging through deep learning
    Sinha, Ayan
    Lee, Justin
    Li, Shuai
    Barbastathis, George
    OPTICA, 2017, 4 (09): : 1117 - 1125
  • [47] Various Deep Learning Algorithms in Computational Intelligence
    Ross, Oscar Humberto Montiel
    AXIOMS, 2023, 12 (05)
  • [48] Deep learning observables in computational fluid dynamics
    Lye K.O.
    Mishra S.
    Ray D.
    Journal of Computational Physics, 2020, 410
  • [49] Deep learning approach to computational chemistry of lanthanides
    Tkachenko, Valery
    Mitrofanov, Artem
    Matveev, Peter
    Korotcov, Alexander
    Zakharov, Rick
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [50] An Alternative to Cognitivism: Computational Phenomenology for Deep Learning
    Beckmann, Pierre
    Koestner, Guillaume
    Hipolito, Ines
    MINDS AND MACHINES, 2023, 33 (03) : 397 - 427