Conway's groupoid and its relatives

被引:1
|
作者
Gill, Nick [1 ]
Gillespie, Neil I. [2 ]
Praeger, Cheryl E. [3 ,4 ]
Semeraro, Jason [2 ]
机构
[1] Univ South Wales, Dept Math, Treforest CF37 1DL, Wales
[2] Univ Bristol, Heilbronn Inst Math Res, Dept Math, Bristol, Avon, England
[3] Univ Western Australia, Ctr Math Symmetry & Computat, Nedlands, WA, Australia
[4] King Abdulaziz Univ, Jeddah, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
M-13; projective plane; design; permutation group; groupoid; code; hypergraph; two-graph; REGULAR CODES; TRANSITIVE CODES; PRIMITIVE GROUPS; FAMILIES; ORDER;
D O I
10.1090/conm/694/13962
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1987, John Horton Conway constructed a subset M-13 of permutations on a set of size 13 for which the subset fixing any given point is isomorphic to the Mathieu group M-12. The construction has fascinated mathematicians for the past thirty years, and remains remarkable in its mathematical isolation. It is based on a "moving-counter puzzle" on the projective plane PG(2, 3). This survey, a homage to John Conway and his mathematics, discusses consequences and generalisations of Conway's construction. In particular it explores how various designs and hypergraphs can be used instead of PG(2, 3) to obtain interesting analogues of M-13. In honour of John Conway, we refer to these analogues as Conway groupoids. A number of open questions are presented.
引用
收藏
页码:91 / 110
页数:20
相关论文
共 50 条
  • [31] Conway's Treasury of Flower Arrangements
    不详
    LIBRARY JOURNAL, 1954, 79 (03) : 208 - 208
  • [32] Conway's question: The chase for completeness
    Dikranjan, Dikran
    Peinador, Elena Martin
    Tarieladze, Vaja
    APPLIED CATEGORICAL STRUCTURES, 2007, 15 (5-6) : 511 - 539
  • [33] Conway’s Nightmare: Brahmagupta and Butterflies
    Richard Evan Schwartz
    The Mathematical Intelligencer, 2023, 45 : 22 - 24
  • [34] AN INTRODUCTION TO CONWAY'S GAMES AND NUMBERS
    Schleicher, Dierk
    Stoll, Michael
    MOSCOW MATHEMATICAL JOURNAL, 2006, 6 (02) : 359 - 388
  • [35] The P1 Galois groupoid and its irreducibility
    Casale, Guy
    COMMENTARII MATHEMATICI HELVETICI, 2008, 83 (03) : 471 - 519
  • [36] Conway's Conjecture for Monotone Thrackles
    Janos Pach
    Sterling, Ethan
    AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (06): : 544 - 548
  • [37] THE MOONSHINE MODULE FOR CONWAY'S GROUP
    Duncan, John F. R.
    Mack-Crane, Sander
    FORUM OF MATHEMATICS SIGMA, 2015, 3
  • [38] Conway's Light on the Shadow of Mordell
    Veselov, Alexander P.
    MATHEMATICAL INTELLIGENCER, 2023, 45 (04): : 371 - 378
  • [39] Conway’s Question: The Chase for Completeness
    Dikran Dikranjan
    Elena Martín Peinador
    Vaja Tarieladze
    Applied Categorical Structures, 2007, 15 : 511 - 539
  • [40] Conway’s Light on the Shadow of Mordell
    Alexander P. Veselov
    The Mathematical Intelligencer, 2023, 45 : 371 - 378