Flower-like 1T-MoS2/NiCo2S4 on a carbon cloth substrate as an efficient electrocatalyst for the hydrogen evolution reaction

被引:13
|
作者
Zheng, Meng [1 ]
Chen, Qianqiao [1 ]
Zhong, Qin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
NI FOAM; BIFUNCTIONAL ELECTROCATALYST; NICKEL FOAM; MOS2; NICO2S4; OXYGEN; NANOPARTICLES; NANOSHEETS; NANORODS; FACILE;
D O I
10.1039/d1dt01948a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The 1T-MoS2/NiCo2S4 composite in situ grown on carbon cloth (CC) was successfully prepared by a two-step hydrothermal method as an efficient electrode for the hydrogen evolution reaction. The morphology and composition characterization show that the composite has a flower-like structure with a large number of edges and surfaces exposed, and the content of the 1T phase in MoS2 is 63%. 1T-MoS2/NiCo2S4/CC exhibits an overpotential of 107 mV at 10 mA cm(-2), and a Tafel slope of 66.4 mV dec(-1) in an alkaline electrolyte. After continuous electrolysis for 24 h at an overpotential of 170 mV, 86% of the original current density was retained in an chronoamperometry measurement. The outstanding catalytic performance of the composite is ascribed to its unique structure, high 1T-MoS2 content and the synergistic catalysis between 1T-MoS2 and NiCo2S4. This work provides a facile and effective strategy for fabricating the 1T-MoS2/NiCo2S4/CC composite and demonstrates that the composite is expected to be a competitive non-noble HER catalyst.
引用
收藏
页码:13320 / 13328
页数:9
相关论文
共 50 条
  • [31] EDTA-assisted hydrothermal synthesis of flower-like CoSe2 nanorods as an efficient electrocatalyst for the hydrogen evolution reaction
    Yanghui Deng
    Cui Ye
    Guo Chen
    Baixiang Tao
    Hongqun Luo
    Nianbing Li
    Journal of Energy Chemistry, 2019, 28 (01) : 95 - 100
  • [32] Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst
    Gao, Qiuyue
    Wang, Xiaoqing
    Shi, Zhenyu
    Ye, Ziran
    Wang, Wencong
    Zhang, Ning
    Hong, Zhanglian
    Zhi, Mingjia
    CHEMICAL ENGINEERING JOURNAL, 2018, 331 : 185 - 193
  • [33] Cerium-doped 1 T phase enriched MoS2 flower-like nanoflakes for boosting hydrogen evolution reaction
    Kong, Linghui
    Gao, Chang
    Liu, Zhixian
    Pan, Lu
    Yin, Penggang
    Lin, Jianjian
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [34] A flower-like CoS2/MoS2 heteronanosheet array as an active and stable electrocatalyst toward the hydrogen evolution reaction in alkaline media
    Shi, Mengtong
    Yang, Zhang
    Zhu, Yaxing
    Wang, Wei
    Wang, Changzheng
    Yu, Aifang
    Pu, Xiong
    Zhai, Junyi
    RSC ADVANCES, 2020, 10 (15) : 8973 - 8981
  • [35] Three-dimensional flower-like NiCo2O4/CNT for efficient catalysis of the oxygen evolution reaction
    Ma, Zhaoling
    Fu, Hao
    Gu, Cibing
    Huang, Youguo
    Hu, Sijiang
    Li, Qingyu
    Wang, Hongqiang
    RSC ADVANCES, 2018, 8 (49): : 28209 - 28215
  • [36] Construction of NiCo2S4/Fe2O3 hybrid nanostructure as a highly efficient electrocatalyst for the oxygen evolution reaction
    Fereja, Shemsu Ligani
    Li, Ping
    Zhang, Ziwei
    Guo, Jinhan
    Fang, Zhongying
    Li, Zongjun
    Chen, Wei
    ELECTROCHIMICA ACTA, 2022, 405
  • [37] Flower-like NiCo2O4-CN as efficient bifunctional electrocatalyst for Zn-Air battery
    Li, Yao
    Zhou, Zihao
    Cheng, Gao
    Han, Shengbo
    Zhou, Junli
    Yuan, Jinkai
    Sun, Ming
    Yu, Lin
    ELECTROCHIMICA ACTA, 2020, 341
  • [38] NICO2S4 - NOVEL H-2 EVOLUTION ELECTROCATALYST IN ALKALINE MEDIA
    MAN, MCM
    TSEUNG, ACC
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (03) : C137 - C137
  • [39] Flower-like MoS2 with stepped edge structure efficient for electrocatalysis of hydrogen and oxygen evolution
    Wang, Anqi
    Hu, Kang
    Liu, Yuqian
    Li, Ruiqi
    Ye, Chenlu
    Yi, Zixiao
    Yan, Kai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (13) : 6573 - 6581
  • [40] Controllable fabrication and structure evolution of hierarchical 1T-MoS2 nanospheres for efficient hydrogen evolution
    Huanran Li
    Xiaobo Han
    Suyu Jiang
    Lili Zhang
    Wei Ma
    Renzhi Ma
    Zhen Zhou
    Green Energy & Environment, 2022, 7 (02) : 314 - 323