Estimation of the resolvent for a diatomic molecule in Born-Oppenheimer approximation

被引:0
|
作者
Jecko, T [1 ]
机构
[1] Tech Univ Berlin, Fachbereich Math MA 7 2, D-10623 Berlin, Germany
关键词
D O I
10.1007/s002200050403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Making use of an adiabatic operator that takes several electronic states into account, we derive a Born-Oppenheimer approximation of the resolvent for a diatomic molecule. This is an improvement of a result in [KMW1]. Such a resolvent approximation is useful to obtain an adiabatic approximation of total cross-sections (see [Jec2]). The strategy we use, based on Mourre's commutator method and on a new kind of global escape function, may be carried over to control the resolvent of some matricial Schrodinger operators. In the same way, we obtain a semiclassical estimate for the resolvent of the semiclassical Dirac operator with scalar electric potential, extending a result of [Ce].
引用
收藏
页码:585 / 612
页数:28
相关论文
共 50 条
  • [31] On the mathematical treatment of the Born-Oppenheimer approximation
    Jecko, Thierry
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (05)
  • [32] Born-Oppenheimer approximation for the XYZ mesons
    Braaten, Eric
    Langmack, Christian
    Smith, D. Hudson
    PHYSICAL REVIEW D, 2014, 90 (01):
  • [33] Born-Oppenheimer approximation for a singular system
    Akbas, Haci
    Turgut, O. Teoman
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [34] Nuclear Rotations and the Born-Oppenheimer Approximation
    Zettili, Nouredine
    PROCEEDINGS OF THE FIFTH SAUDI PHYSICAL SOCIETY CONFERENCE (SPS5), 2011, 1370
  • [35] Born-Oppenheimer approximation in open systems
    Huang, X. L.
    Yi, X. X.
    PHYSICAL REVIEW A, 2009, 80 (03)
  • [36] Formal WKB method and polyatomic molecule spectrum in Born-Oppenheimer approximation
    Messirdi, B
    Senoussaoui, A
    CANADIAN JOURNAL OF PHYSICS, 2001, 79 (04) : 757 - 771
  • [37] QUANTUM CHAOS IN THE BORN-OPPENHEIMER APPROXIMATION
    BLUMEL, R
    ESSER, B
    PHYSICAL REVIEW LETTERS, 1994, 72 (23) : 3658 - 3661
  • [38] The Born-Oppenheimer approximation: A toy version
    Gangopadhyay, G
    Dutta-Roy, B
    AMERICAN JOURNAL OF PHYSICS, 2004, 72 (03) : 389 - 392
  • [39] The Born-Oppenheimer approximation to the wave operators
    Kargol, A
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 31 (03) : 397 - 402
  • [40] Spin Evolution in the Born-Oppenheimer Approximation
    Ansermet, J. - Ph.
    Maschke, Klaus
    Reuse, Francois
    ISRAEL JOURNAL OF CHEMISTRY, 2022, 62 (11-12)