Error Analysis of SAV Finite Element Method to Phase Field Crystal Model

被引:15
|
作者
Wang, Liupeng [1 ]
Huang, Yunqing [1 ,2 ,3 ]
Jiang, Kai [1 ,2 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[3] Xiangtan Univ, Minist Educ Intelligent Comp & Informat Proc, Key Lab, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear finite element method; scalar auxiliary variable approach; phase field crystal model; error analysis; energy stability; adaptive method; CONVEX SPLITTING SCHEME; SUPERCONVERGENT PATCH RECOVERY; DISCONTINUOUS GALERKIN METHOD; ALLEN-CAHN EQUATION; CONVERGENCE; ACCURACY;
D O I
10.4208/nmtma.OA-2019-0110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct and analyze an energy stable scheme by combining the latest developed scalar auxiliary variable (SAV) approach and linear finite element method (FEM) for phase field crystal (PFC) model, and show rigorously that the scheme is first-order in time and second-order in space for the L-2 and H-1 gradient flow equations. To reduce efficiently computational cost and capture accurately the phase interface, we give a simple adaptive strategy, equipped with a posteriori gradient estimator, i.e., L-2 norm of the recovered gradient. Extensive numerical experiments are presented to verify our theoretical results and to demonstrate the effectiveness and accuracy of our proposed method.
引用
收藏
页码:372 / 399
页数:28
相关论文
共 50 条
  • [31] A LOCAL FIELD ERROR PROBLEM APPROACH FOR ERROR ESTIMATION IN FINITE-ELEMENT ANALYSIS
    DRAGO, G
    MOLFINO, P
    NERVI, M
    REPETTO, M
    IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (02) : 1743 - 1746
  • [32] Error analysis for the finite element approximation of a radiative transfer model
    Fuhrer, C
    Rannacher, R
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (06): : 743 - 762
  • [33] Finite element electromagnetic analysis of the jet error field correction coils
    Masiello, A
    Bigi, M
    Buttery, R
    Riccardo, V
    FUSION ENGINEERING AND DESIGN, 2002, 63-64 : 455 - 460
  • [34] Finite element analysis of a new phase field model with p-Laplacian operator
    Zou, Guang-an
    Wang, Xue
    Sheu, Tony W. H.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 134 - 152
  • [35] An Adaptive Mesh Method in Transient Finite Element Analysis of Magnetic Field Using a Novel Error Estimator
    Zhao, Yanpu
    Zhang, Xiu
    Ho, S. L.
    Fu, W. N.
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (11) : 4160 - 4163
  • [36] Error estimates for a stabilized finite element method for the Oldroyd B model
    Bensaada, Mohamed
    Esselaoui, Driss
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) : 1042 - 1059
  • [37] Error analysis of fully decoupled SAV scheme for two phase magnetohydrodynamic diffuse interface model
    Wang, Danxia
    Wang, Zhaowei
    Zhang, Chenhui
    Jia, Hongen
    Zhang, Jianwen
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [38] Finite element approximation of a phase field model for void electromigration
    Barrett, JW
    Nürnberg, R
    Styles, V
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) : 738 - 772
  • [39] Adaptive scaled boundary finite element method for hydrogen assisted cracking with phase field model
    Suvin, V. S.
    Ooi, Ean Tat
    Song, Chongmin
    Natarajan, Sundararajan
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 134
  • [40] A modified finite volume element method for solving the phase field Allen-Cahn model
    Li, Huanrong
    Wang, Dongmei
    APPLIED MATHEMATICS LETTERS, 2022, 127