Error Analysis of SAV Finite Element Method to Phase Field Crystal Model

被引:15
|
作者
Wang, Liupeng [1 ]
Huang, Yunqing [1 ,2 ,3 ]
Jiang, Kai [1 ,2 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[3] Xiangtan Univ, Minist Educ Intelligent Comp & Informat Proc, Key Lab, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear finite element method; scalar auxiliary variable approach; phase field crystal model; error analysis; energy stability; adaptive method; CONVEX SPLITTING SCHEME; SUPERCONVERGENT PATCH RECOVERY; DISCONTINUOUS GALERKIN METHOD; ALLEN-CAHN EQUATION; CONVERGENCE; ACCURACY;
D O I
10.4208/nmtma.OA-2019-0110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct and analyze an energy stable scheme by combining the latest developed scalar auxiliary variable (SAV) approach and linear finite element method (FEM) for phase field crystal (PFC) model, and show rigorously that the scheme is first-order in time and second-order in space for the L-2 and H-1 gradient flow equations. To reduce efficiently computational cost and capture accurately the phase interface, we give a simple adaptive strategy, equipped with a posteriori gradient estimator, i.e., L-2 norm of the recovered gradient. Extensive numerical experiments are presented to verify our theoretical results and to demonstrate the effectiveness and accuracy of our proposed method.
引用
收藏
页码:372 / 399
页数:28
相关论文
共 50 条
  • [1] ERROR ESTIMATES FOR SECOND-ORDER SAV FINITE ELEMENT METHOD TO PHASE FIELD CRYSTAL MODEL
    Wang, Liupeng
    Huang, Yunqing
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (01): : 1735 - 1752
  • [2] A Finite Element Method for a Phase Field Model of Nematic Liquid Crystal Droplets
    Diegel, Amanda E.
    Walker, Shawn W.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (01) : 155 - 188
  • [3] Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation
    Xiaoli Li
    Jie Shen
    Advances in Computational Mathematics, 2020, 46
  • [4] Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation
    Li, Xiaoli
    Shen, Jie
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (03)
  • [5] Error estimates of a SAV-BDF2 finite element method with variable time steps for the Cahn-Hilliard-Navier-Stokes phase-field model
    Wang, Danxia
    Lv, Jiongzhuo
    Chen, Yanping
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 145
  • [6] AN ERROR ESTIMATE FOR A FINITE-ELEMENT SCHEME FOR A PHASE FIELD MODEL
    CHEN, ZM
    HOFFMANN, KH
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1994, 14 (02) : 243 - 255
  • [7] ERROR ESTIMATES FOR A FINITE ELEMENT DISCRETIZATION OF A PHASE FIELD MODEL FOR MIXTURES
    Eck, Ch.
    Jadamba, B.
    Knabner, P.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4429 - 4445
  • [8] Analysis of Transformation Plasticity in Steel Using a Finite Element Method Coupled with a Phase Field Model
    Cho, Yi-Gil
    Kim, Jin-You
    Cho, Hoon-Hwe
    Cha, Pil-Ryung
    Suh, Dong-Woo
    Lee, Jae Kon
    Han, Heung Nam
    PLOS ONE, 2012, 7 (04):
  • [9] Error estimates for a finite element discretization of a two-scale phase field model
    Eck, Christof
    MULTISCALE MODELING & SIMULATION, 2007, 6 (01): : 1 - 26
  • [10] Dual-interface model for twinning in the coupled crystal plasticity finite element-Phase field method
    Mo, Hanxuan
    Liu, Guisen
    Mao, Yong
    Shen, Yao
    Wang, Jian
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 158