Classifying "kinase inhibitor-likeness" by using machine-learning methods

被引:49
|
作者
Briem, H [1 ]
Günther, J [1 ]
机构
[1] Schering AG, Res Ctr Europe, CDCC Computat Chem, D-13342 Berlin, Germany
关键词
computer chemistry; drug design; inhibitors; kinases; machine learning;
D O I
10.1002/cbic.200400109
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
By using an in-house data set of small-molecule structures, encoded by Ghose-Crippen parameters, several machine learning techniques were applied to distinguish between kinase inhibitors and other molecules with no reported activity on any protein kinase. All four approaches pursued-support-vector machines (SVM), artificial neural networks (ANN), k nearest neighbor classification with GA-optimized feature selection (GAANN), and recursive partitioning (RP)-proved capable of providing a reasonable discrimination. Nevertheless, substantial differences in performance among the methods were observed. For all techniques tested, the use of a consensus vote of the 13 different models derived improved the quality of the predictions in terms of accuracy, precision, recall, and F1 value. Support-vector machines, followed by the GA/kNN combination, outperformed the other techniques when comparing the average of individual models. By using the respective majority votes, the prediction of neural networks yielded the highest F1 value, followed by SVMs.
引用
收藏
页码:558 / 566
页数:9
相关论文
共 50 条
  • [21] Prediction of postoperative complications after oesophagectomy using machine-learning methods
    Jung, Jin-On
    Pisula, Juan I.
    Bozek, Kasia
    Popp, Felix
    Fuchs, Hans F.
    Schroeder, Wolfgang
    Bruns, Christiane J.
    Schmidt, Thomas
    [J]. BRITISH JOURNAL OF SURGERY, 2023, 110 (10) : 1361 - 1366
  • [22] Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
    Montesinos Lopez, Osval A.
    Mosqueda Gonzalez, Brandon Alejandro
    Montesinos Lopez, Abelardo
    Crossa, Jose
    [J]. GENES, 2023, 14 (05)
  • [23] Machine-learning Love: classifying the equation of state of neutron stars with transformers
    Goncalves, Goncalo
    Ferreira, Marcio
    Aveiro, Joao
    Onofre, Antonio
    Freitas, Felipe F.
    Providencia, Constanca
    Font, Jose A.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (12):
  • [24] Methods for Automatic Machine-Learning Workflow Analysis
    Wendlinger, Lorenz
    Berndl, Emanuel
    Granitzer, Michael
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT V, 2021, 12979 : 52 - 67
  • [25] Machine-Learning Methods for Computational Science and Engineering
    Frank, Michael
    Drikakis, Dimitris
    Charissis, Vassilis
    [J]. COMPUTATION, 2020, 8 (01)
  • [26] Machine-Learning Methods on Noisy and Sparse Data
    Poulinakis, Konstantinos
    Drikakis, Dimitris
    Kokkinakis, Ioannis W.
    Spottswood, Stephen Michael
    [J]. MATHEMATICS, 2023, 11 (01)
  • [27] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24
  • [28] Detection of Huanglongbing in Florida using fluorescence imaging spectroscopy and machine-learning methods
    Wetterich, Caio Bruno
    de Oliveira Neves, Ruan Felipe
    Belasque, Jose
    Ehsani, Reza
    Marcassa, Luis Gustavo
    [J]. APPLIED OPTICS, 2017, 56 (01) : 15 - 23
  • [29] Sepsis prediction using machine-learning methods: prolonged disorders of consciousness patients
    Metsker, O.
    Aybazova, M.
    Kondratyeva, E.
    Dryagina, N.
    Kondratev, A.
    Efimov, E.
    [J]. JOURNAL OF THE NEUROLOGICAL SCIENCES, 2019, 405
  • [30] Uncertainty Modelling of Laser Scanning Point Clouds Using Machine-Learning Methods
    Hartmann, Jan
    Alkhatib, Hamza
    [J]. REMOTE SENSING, 2023, 15 (09)